
Ročńıkový projekt (1) - zhrnutie vykonaných prác

Matej Fedor

February 7, 2019

1

Contents

1 Úvod 3

2 Štruktúra aplikácie 3
2.1 Základné koncepty . 3
2.2 Vstup aplikácie . 3
2.3 Jednoznačná identifikácia súboru . 4
2.4 Komunikácia s databázovým systémom a výstup aplikácie 4
2.5 Paralelné spracovanie vstupu . 4

3 Záver 5

2

1 Úvod

Tento dokument obsahuje rozbor prác vykonaných na ročńıkovom projekte počas zimného
semestra. Ich ciělom bolo vytvorǐt základnú funkcionalitu už́ıvatělskej konzolovej aplikácie pre
operačné systémy na báze UNIXu. Všeobecnou úlohou aplikácie je vykonať validáciu zvolených
systémových súborov na pamäťovom médiu kontrolovaného zariadenia a informovať použ́ıvatěla
o bezpečnostnej povahe týchto súborov. Ciělom je odhalǐt nedovolenú a potenciálne škodlivú
modifikáciu systémových súborov, ktoré mohol vykonať útočnńık alebo malvér. Hlavnými
charakteristikami aplikácie sú jej kompatibilita s čo možno najväčšou množinou UNIXových
systémov, efektivita, kompaktnosť a intuit́ıvne ovládanie. Práce na aplikácii sa v zimnom
semestri nekončia, jej vývoj bude prebiehať aj naďalej, berúc do úvahy aktuálne potreby klienta.
K vybudovaniu podobného softvéru je potrebných viacero zložiek, ktoré poṕı̌seme bližšie v
nasledujúcich častiach.

2 Štruktúra aplikácie

2.1 Základné koncepty

Východiskom našich úvah sa stáva nutnosť kompatibility aplikácie s čo najväčšou množinou
systémov na báze UNIXu. Jej plánované použitie v praxi len zdôrazňuje, že je túto požiadavku
potrebné brať vážne. Preto sme pri vývoji kládli dôraz na vhodný výber technológíı, ktoré
poskytujú okrem vyspelosti aj stabilitu a rozumnú spätnú kompatibilitu. Snažili sme sa
minimalizovať množstvo závislost́ı na nutné minimum a vyhnúť sa zbytočnému použ́ıvaniu
neštandardných, ikeď možno pre programátora pohodlneǰśıch, knižńıc, ktoré by len rušili kom-
paktnosť našej aplikácie a mohli by skomplikovať jej použitie na niektorých systémoch. Práve
naopak, striktne sme implementovali pomocou funkcionality garantovanej štandardom POSIX
a štandardmi použitého programovacieho jazyka, ktorým je v našom pŕıpade C++.

Všeobecnú úlohu poṕısanú v úvode bude aplikácia plnǐt nasledujúcim spôsobom. Každému
zo zvolených súborov prirad́ı jednoznačný identifikátor na základe ich obsahu a v špeciálne
vytvorenej databáze sa pokúsi o tomto identifikátore, pŕıpadne o názve súboru, źıskať ďaľsie
informácie. Spomı́naná databáza vo svojej úplnej podobe nie je predmetom ročńıkového pro-
jektu a na jej tvorbe a udržiavańı sa bude pracovať v neskorš́ıch fázach projektu.

Aplikáciu sme s oȟladom na jej pŕıstup k úlohe rozdelili do niekǒlkých nezávislých kom-
ponentov. Tento pŕıstup nám umožnil okrem iného jednoduché pridávanie novej funkcionality
bez toho aby bolo nutné menǐt časti kódu, ktoré so zmenou priamo nesúvisia. Jej bloková
štruktúra s abstraktnými rozhraniami zároveň dáva predpoklad pre celkovú kompaktnosť ap-
likácie aj napriek jej práci v rôznych odlǐsných režimoch. Pri vývoji sme teda zvážovali návrh
komponentov pre vstup aplikácie, priradzovanie jednoznačného identifikátora súboru, komu-
nikáciu s databázovým systémom a výstup aplikácie a paralelné spracovanie vstupu.

2.2 Vstup aplikácie

Kľúčovým vstupom aplikácie je samotné preȟladavanie súborového systému (Inupt::InputScanner).
V súčasnosti trieda umožňuje rekurźıvne preȟladávanie priestoru s definovaným koreňom v
niektorom adresári alebo množine adresárov. Dobudúcna je ale plánované aj preȟladávanie na
základe názvu súboru alebo množiny názvov a rovnako aj aplikácia filtrov pre pŕıpony súborov.

Iným možným vstupom aplikácie je vstupný súbor (Input::InputFile). Takýto súbor ob-
sahuje vo vhodnom formáte zoznam absolútnych ciest k súborom preȟladaného priestoru spolu
s korešpondujúcimi jednoznačnými identifikátormi. Súbor je vytvorený priamo aplikáciou (2.4)

3

a umožňuje rozdelǐt celkový proces validácie do viacerých krokov, respekt́ıve vykonať jeho časť
aj bez internetového pripojenia, kedy nie je možné komunikovať s databázou.

Pre metódy vstupu sme zvolili štandardné knižnice, ktoré nám zaručia širokú kompatibilitu
naprieč rôznymi systémami. Pretože pri vstupe zo súboru už znova nepoč́ıtame jeho identi-
fikátor, narozdiel od vstupu preȟladávańım, vzniklo mierne neelegantné porušenie zapúzdrenia
metódy vstupu rozhrańım Input a naša aplikácia sa muśı v rôznych režimoch na základe
metódy vstupu vetvǐt. Podobné principiálne problémy sa nám našťastie v ďaľśıch kompo-
nentoch nevyskytli.

2.3 Jednoznačná identifikácia súboru

Pretože jednoznačnosť identifikátora je v našej aplikácii ǩlúčová, zvolili sme na jeho generovanie
hashovaciu funkciu. Na konkrétnej funkcii nezálež́ı, v našej aplikácii vieme od konkrétnej im-
plementácie abstrahovať (HashAlgorithm). Dôležité je, aby bola v aktuálnom čase považovaná
za bezpečnú a nebolo možné v rozumnom čase nachádzať jej koĺızie. Východiskom sa nám stal
SHA256 (HashAlgorithm::SHA256), ktorý je dobrým kompromisom medzi bezpečnosťou identi-
fikácie a miestom v pamäti, ktorý identifikátor zaberá. V budúcnosti ale plánujeme už́ıvatělom
umožnǐt aj využitie iných hashovaćıch funkcíı, ktoré adresujú isté nedokonalosti SHA256.

So štandardnými knižnicami sme si tentokrát nevystačili a vzniká nám závislosť na knižnici
Crypto++. Podporovaná je však na najrôzneǰśıch platformách od Redhat a Debian, cez An-
droid, až po platformy Microsoftu. Problémy s kompatibilitou teda neočakávame, taktiež nám
umožńı jednoducho implementovať aj mnoho iných hashovaćıch funkcíı.

2.4 Komunikácia s databázovým systémom a výstup aplikácie

Všetka práca vykonaná v doposiǎl spomenutých komponentoch sa zúroč́ı v komponente Out-
put. Primárna metóda źıskania výstupu aplikácie je založená na źıskańı potrebnej informácie z
databázy (Output::OutputDBConnection). Vělký pozor bolo treba dať na samotný výber API,
ktorým do databázy pristúpime. Tu totiž kladieme nároky nielen na systémy použ́ıvajúce našu
aplikáciu, ale aj na databázové servery, ktoré obsluhujú našu databázu. Z viacerých možnost́ı
sme zvolili staršie C API založené na JDBC, ktoré nám umožńı komunikáciu so sytémami Mari-
aDB ako aj MySQL, a to s vělmi slušnou spätnou kompatibilitou a minimálnymi závislosťami
na strane servera.

Parametrami pre vyȟladávanie v databáze sú v našej aplikácii identifikátor súboru a ab-
solútna cesta k súboru. Na základe dát v databáze vieme použ́ıvatělovi poskytnúť bližšie in-
formácie o systémovom súbore, taktiež konštatovať, že je evidovaný, že je evidovaný ale na inom
mieste v súborovom systéme, informovať už́ıvatěla o existencii súboru s rovnakým názvom ale
odlǐsným identifikátorom, pŕıpadne konštatovať, že daný súbor nie je vôbec rozpoznaný. Kom-
pletná informácia o skenovanom priestore je priebežne zapisovaná do výstupného súboru.

Výstup aplikácie môže byť aj súbor obsahujúci zoznam absolútnych ciest k súborom a ich
identifikátorom (Output::OutputOffline). Takýto súbor je určený na neskoršie spracovanie ap-
likáciou, umožňuje rozdelǐt spracovanie na viacero krokov, pŕıpadne vykonať sken súborového
priestoru aj bez sieťového pripojenia.

2.5 Paralelné spracovanie vstupu

Práce na tomto komponente ešte prebiehajú, sú v štádiu návrhu a čiastočnej implementácie.
Čas ich zdiělania s verejnosťou nevieme odhadnúť. Motivácia riešenia je zjavná, akonáhle sa
pokúsime spracovať vstupy s počtom súborov rádovo 105. Poďla našich merańı tento proces

4

zaberal už niekǒlko minút a s rastúcou vělkosťou preȟladávaných súborov sa bude situácia dra-
maticky zhoršovať.

Pri návrhu metódy paralelného spracovania vstupu muśıme zvážǐt zložitosť vykonávania
jednotlivých komponentov, ako aj to, že niektoré naše komponenty śıce sú reentrant1, no
žiadny nie je thread-safe2. Input sa nám vo všeobecnosti paralelizuje vělmi zle. Č́ıtanie zo
vstupného súboru muśı byť synchronizované, snaha paralelizovať preȟladávanie súborového
systému efekt́ıvne by bola zbytočne zložitá a fungovala by len za určitých predpokladov. Samotné
inkrementovanie iterátora InputScanner je naviac rýchle a nie je pre nás problémom. Preto
budeme súborový priestor preȟladávať sekvenčne a vstupné informácie podávať jednotlivým
vláknam aplikácie pomocou socketov. Pomocou socketov vieme uskotočnǐt obojstrannú komu-
nikáciu a zaznamenávať si pŕıpadné informácie o zlyhańı spracovania vstupov.

Podstatne väčš́ı zmysel má o paralelnom riešeńı premýš̌lať v súvislosti s poč́ıtańım identi-
fikátora súboru, ktorého časová zložitosť je závislá od vělkosti súboru. Databázový systém nám
zasa zabezpeč́ı bezpečný paralelný pŕıstup do databázy, takže aj túto operáciu vieme vykonávať
potenciálne efekt́ıvneǰsie. Vykonávanie muśıme synchronizovať pri zapisovańı do výstupných
súborov, čo ale nie je problém, lebo vlákna v synchronizovanej časti kódu neostanú dlhú dobu.

Ciělom vznikajúcej triedy ParallelExecutor je, aby mal použ́ıvatěl možnosť elegantne vykonávať
spracovanie vstupu na ńım určenom (rozumnom) počte jadier CPU.

3 Záver

V predošlom sme podrobne poṕısali koncepty, pŕıstup k návrhu a vznik filozofie našej aplikácie.
V súčasnosti neexistuje hotové konzolové rohranie pre použ́ıvatěla aplikácie. To, na čom sme
pracovali tento semester, je čo možno najkompaktneǰśı a najzrozumitělneǰśı návrh kostry ap-
likácie a hierarchie tried komponentov, aby každá ďaľsia úroveň aplikácie postavená na týchto
komponentoch mohla byť prototypovaná rýchlo a elegantne. Tento pŕıstup je pre nás vělmi
dôležitý keďže podobnú aplikáciu plánujeme v budúcnosti implementovať aj pre platformy Mi-
crosoftu. Pre detaily súvisiace s implementáciou si, prośım, pozrite zdrojové kódy, ktoré sú k
dispoźıcii na webovej stránke projektu. Komentáre spresňujúce zdrojový kód pripravujeme a
pribudnú v najbližsom čase.

1komponenty možno vykonávať paralelne, ak každá paralelná vetva programu disponuje vlastnou inštanciou
komponentu

2komponenty možno vykonávať paralelne, aj ak všetky paralelné vetvy programu zdiělajú jedinú inštanciu
komponentu

5

