Roc¢nikovy projekt (1) - zhrnutie vykonanych préc

Matej Fedor
February 7, 2019

Contents
1 Uvod

2 Struktura aplikdcie

2.1 Zéakladné koncepty
2.2 Vstup aplikacie

2.3 Jednoznac¢ni identifikdcia stiboru oo
2.4 Komunikacia s databazovym systémom a vystup aplikdcie

2.5 Paralelné spracovanie vstupu

3 Zaver

B W W W

[

1 Uvod

Tento dokument obsahuje rozbor prac vykonanych na ro¢nikovom projekte pocas zimného
semestra. Ich cielom bolo vytvorit zdkladnt funkcionalitu uzivatelskej konzolovej aplikdcie pre
operacéné systémy na baze UNIXu. Vseobecnou tilohou aplikécie je vykonat validdciu zvolenych
systémovych stiborov na pamatovom médiu kontrolovaného zariadenia a informovat pouzivatela
o bezpecnostnej povahe tychto siborov. Cielom je odhalif nedovolent a potencidlne skodlivi
modifikdciu systémovych siborov, ktoré mohol vykonat uto¢nnik alebo malvér. Hlavnymi
charakteristikami aplikacie st jej kompatibilita s ¢o mozno najva¢sou mnozinou UNIXovych
systémov, efektivita, kompaktnost a intuitivne ovlddanie. Price na aplikdcii sa v zimnom
semestri nekonéia, jej vyvoj bude prebichat aj nadalej, bertc do tvahy aktudlne potreby klienta.
K vybudovaniu podobného softvéru je potrebnych viacero zloziek, ktoré popiseme blizsie v
nasledujicich castiach.

2 Struktira aplikdcie

2.1 Zakladné koncepty

Vychodiskom nasich tivah sa stdva nutnost kompatibility aplikdcie s ¢o najviaésou mnozinou
systémov na béze UNIXu. Jej pldnované pouzitie v praxi len zdorazinuje, ze je tuto poziadavku
potrebné brat vazne. Preto sme pri vyvoji klddli déraz na vhodny vyber technoldgii, ktoré
poskytuji okrem vyspelosti aj stabilitu a rozumnid spétnid kompatibilitu. Snazili sme sa
minimalizovat mnozstvo zdvislost{ na nutné minimum a vyhnit sa zbytoénému pouzivaniu
nestandardnych, iked mozno pre programéatora pohodlnejsich, kniznic, ktoré by len rusili kom-
paktnost nasej aplikdcie a mohli by skomplikovat jej pouzitie na niektorych systémoch. Prave
naopak, striktne sme implementovali pomocou funkcionality garantovanej standardom POSIX
a Standardmi pouzitého programovacieho jazyka, ktorym je v nasom pripade C++.

Vseobecni tlohu popisant v tivode bude aplikacia plnit nasledujicim sposobom. Kazdému
zo zvolenych suborov priradi jednoznacny identifikator na zdklade ich obsahu a v Specidlne
vytvorenej databdze sa pokisi o tomto identifikitore, pripadne o nézve stiboru, ziskat dalsie
informécie. Spominand databéza vo svojej Uiplnej podobe nie je predmetom roé¢nikového pro-
jektu a na jej tvorbe a udrziavani sa bude pracovat v neskorsich fazach projektu.

Aplikdciu sme s ohladom na jej pristup k tlohe rozdelili do niekolkych nezavislych kom-
ponentov. Tento pristup ndm umoznil okrem iného jednoduché pridavanie novej funkcionality
bez toho aby bolo nutné menit éasti kédu, ktoré so zmenou priamo nesivisia. Jej blokova
struktira s abstraktnymi rozhraniami zdrovenn déva predpoklad pre celkovi kompaktnost ap-
likacie aj napriek jej praci v roéznych odlisnych rezimoch. Pri vyvoji sme teda zvazovali navrh
komponentov pre vstup aplikdcie, priradzovanie jednoznacného identifikdtora siboru, komu-
nikaciu s databazovym systémom a vystup aplikdcie a paralelné spracovanie vstupu.

2.2 Vstup aplikacie

Kli¢ovym vstupom aplikécie je samotné prehladavanie siborového systému (Inupt::InputScanner).

V stcasnosti trieda umoziuje rekurzivne prehladdvanie priestoru s definovanym koreiiom v

niektorom adresari alebo mnozine adresérov. Dobudicna je ale plénované aj prehladdvanie na

zéklade ndzvu suboru alebo mnoziny nazvov a rovnako aj aplikacia filtrov pre pripony suborov.
Inym moznym vstupom aplikécie je vstupny stibor (Input::InputFile). Takyto sibor ob-

sahuje vo vhodnom forméte zoznam absolitnych ciest k siborom prehladaného priestoru spolu

s korespondujiicimi jednoznaénymi identifikdtormi. Sibor je vytvoreny priamo aplikédciou (2.4)

a umoziuje rozdelit celkovy proces validdcie do viacerych krokov, respektive vykonat jeho ¢ast
aj bez internetového pripojenia, kedy nie je mozné komunikovat s databdzou.

Pre metédy vstupu sme zvolili Standardné kniznice, ktoré nam zarucia siroku kompatibilitu
naprie¢ roznymi systémami. Pretoze pri vstupe zo stiboru uz znova nepocitame jeho identi-
fikdtor, narozdiel od vstupu prehladdvanim, vzniklo mierne neelegantné porusenie zaptzdrenia
metédy vstupu rozhranim Input a nasa aplikacia sa musi v roznych rezimoch na zaklade
metédy vstupu vetvit. Podobné principidlne problémy sa ndm nastastie v dalsich kompo-
nentoch nevyskytli.

2.3 Jednoznaéna identifikiacia siiboru

Pretoze jednoznaénost identifikétora je v nasej aplikacii klicova, zvolili sme na jeho generovanie
hashovaciu funkciu. Na konkrétnej funkcii nezélezi, v nasej aplikacii vieme od konkrétnej im-
plementécie abstrahovat (HashAlgorithm). Délezité je, aby bola v aktudlnom ¢ase povazovand
za bezpeénti a nebolo mozné v rozumnom ¢ase nachddzat jej kolizie. Vychodiskom sa ndm stal
SHA256 (HashAlgorithm::SHA256), ktory je dobrym kompromisom medzi bezpeénostou ident;i-
fikdcie a miestom v pamiiti, ktory identifikitor zaberd. V budicnosti ale planujeme uzivatelom
umoznit aj vyuzitie inych hashovacich funkeii, ktoré adresujui isté nedokonalosti SHA256.

So standardnymi kniznicami sme si tentokrat nevystacili a vznikd ndm zavislost na kniznici
Crypto++. Podporovana je vSak na najroznejsich platformach od Redhat a Debian, cez An-
droid, az po platformy Microsoftu. Problémy s kompatibilitou teda neo¢akavame, taktiez nam
umozni jednoducho implementovat aj mnoho inych hashovacich funkcii.

2.4 Komunikacia s databazovym systémom a vystup aplikacie

Vsetka préca vykonana v doposial spomenutych komponentoch sa ziiroéi v komponente Out-
put. Primarna metdda ziskania vystupu aplikdcie je zalozena na ziskani potrebnej informacie z
databazy (Output::OutputDBConnection). Velky pozor bolo treba dat na samotny vyber API,
ktorym do databazy pristipime. Tu totiz kladieme néroky nielen na systémy pouzivajice nasu
aplikéciu, ale aj na databazové servery, ktoré obsluhuju nasu databazu. Z viacerych moznosti
sme zvolili starsie C API zalozené na JDBC, ktoré ndm umozni komunikéciu so sytémami Mari-
aDB ako aj MySQL, a to s velmi slusnou spétnou kompatibilitou a minimélnymi zavislostami
na strane servera.

Parametrami pre vyhladdvanie v databdze si v nasej aplikdcii identifikitor stiboru a ab-
soltitna cesta k siboru. Na zdklade dt v databdze vieme pouzivatelovi poskytnif blizsie in-
formécie o systémovom stibore, taktiez konstatovat, Ze je evidovany, 7e je evidovany ale na inom
mieste v siborovom systéme, informovat uzivatela o existencii stiboru s rovnakym nézvom ale
odlisnym identifikdtorom, pripadne konstatovat, Zze dany sibor nie je vobec rozpoznany. Kom-
pletnd informécia o skenovanom priestore je priebezne zapisovana do vystupného siboru.

Vystup aplikdcie moze byt aj sibor obsahujici zoznam absolitnych ciest k siborom a ich
identifikdtorom (Output::OutputOffline). Takyto stibor je uréeny na neskorsie spracovanie ap-
likciou, umoziiuje rozdelit spracovanie na viacero krokov, pripadne vykonat sken siborového
priestoru aj bez sietového pripojenia.

2.5 Paralelné spracovanie vstupu

Prace na tomto komponente este prebiehaji, su v §tadiu navrhu a Ciastocnej implementacie.
Cas ich zdielania s verejnostou nevieme odhadnut. Motivacia rieSenia je zjavna, akonahle sa
pokusime spracovat vstupy s po¢tom siborov rddovo 10°. Podla nasich merani tento proces

zaberal uz niekolko mintt a s rasticou velkostou prehladdvanych siborov sa bude situdcia dra-
maticky zhorgovat.

Pri ndvrhu metédy paralelného spracovania vstupu musime zvazit zlozitost vykondvania
jednotlivych komponentov, ako aj to, Ze niektoré nase komponenty sice st reentrant!, no
ziadny nie je thread-safe?. Input sa ndm vo vieobecnosti paralelizuje velmi zle. Citanie zo
vstupného stiboru musi byt synchronizované, snaha paralelizoval prehladdvanie siborového
systému efektivne by bola zbytocne zlozita a fungovala by len za urcitych predpokladov. Samotné
inkrementovanie iteratora InputScanner je naviac rychle a nie je pre nas problémom. Preto
budeme siborovy priestor prehladdvat sekvenéne a vstupné informécie podavat jednotlivym
vldknam aplikdcie pomocou socketov. Pomocou socketov vieme uskotoénit obojstranni komu-
nikaciu a zaznamenavat si pripadné informécie o zlyhani spracovania vstupov.

Podstatne vacsi zmysel mé o paralelnom rieseni premysiat v stvislosti s poéitanim identi-
fikdtora siboru, ktorého casova zlozitost je zdvisld od velkosti siiboru. Databézovy systém ndm
zasa zabezpedi bezpeény paralelny pristup do databazy, takze aj ttito operaciu vieme vykondvat
potencidlne efektivnejsie. Vykondvanie musime synchronizovat pri zapisovani do vystupnych
suborov, ¢o ale nie je problém, lebo vlakna v synchronizovanej ¢asti kédu neostant dlht dobu.

Cielom vznikajicej triedy ParallelExecutor je, aby mal pouzivatel moznost elegantne vykondvat
spracovanie vstupu na nim uréenom (rozumnom) pocte jadier CPU.

3 Zaver

V predoslom sme podrobne popisali koncepty, pristup k navrhu a vznik filozofie nasej aplikécie.
V sticasnosti neexistuje hotové konzolové rohranie pre pouzivatela aplikdcie. To, na ¢om sme
pracovali tento semester, je o mozno najkompaktnejsi a najzrozumitelnejsi navrh kostry ap-
likdcie a hierarchie tried komponentov, aby kazda dalsia troven aplikédcie postavend na tychto
komponentoch mohla byt prototypovand rychlo a elegantne. Tento pristup je pre nas velmi
dolezity kedze podobnt aplikéciu planujeme v buddcnosti implementovat aj pre platformy Mi-
crosoftu. Pre detaily suvisiace s implementéaciou si, prosim, pozrite zdrojové kédy, ktoré su k
dispozicii na webovej stranke projektu. Komentare spresnujice zdrojovy kéd pripravujeme a
pribudnt v najblizsom ¢ase.

1komponenty mozno vykondvat paralelne, ak kazda paralelnd vetva programu disponuje vlastnou instanciou
komponentu

2komponenty mozno vykondvat paralelne, aj ak vietky paralelné vetvy programu zdielajd jedind instanciu
komponentu

