
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Podpora pochopenia softvéru
Diplomová práca

2026
Bc. Teodor Fuček

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Podpora pochopenia softvéru
Diplomová práca

Študijný program: Aplikovaná informatika
Študijný odbor: Informatika
Školiace pracovisko: Katedra aplikovanej informatiky
Školiteľ: doc. Ing. Ivan Polášek, PhD.

Bratislava, 2026
Bc. Teodor Fuček

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Teodor Fuček
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: slovenský
Sekundárny jazyk: anglický

Názov: Podpora pochopenia softvéru
Supporting software comprehension

Anotácia: Každá softvérová spoločnosť si cení svojich kvalitných expertov a ich čas, ktorý
musia venovať novoprijatým zamestnancom a začiatočníkom na vysvetlenie
konkrétneho obsahu a kontextu zdrojového kódu. Vysvetľovanie neznámeho
systému a jeho jednotlivých elementov a modulov, metód a tried pomocou AI
pre začiatočníka v tíme až po zobrazenie modelu (napr. UML diagramu tried
alebo UML sekvenčného diagramu) cez PlantUML by mohol finančne aj časovo
tento proces zefektívniť.

Cieľ: Navrhnite postup využitia AI pri generovaní dokumentácie alebo interaktívnom
vysvetľovaní softvéru.

Vedúci: doc. Ing. Ivan Polášek, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 06.11.2024

Dátum schválenia: 08.11.2024 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

Poďakovanie

iii

Abstrakt

Táto diplomová práca sa zameriava na podporu pochopenia existujúceho softvéru po-
mocou nástrojov umelej inteligencie. Motiváciou je znížiť čas a náklady, ktoré skúsení
vývojári venujú vysvetľovaniu zdrojového kódu novým členom tímu. V práci navrhu-
jeme a implementujeme nástroj, ktorý automaticky spracuje repozitár so zdrojovým
kódom, vykoná statickú analýzu a pomocou jazykového modelu vygeneruje prehľadnú
dokumentáciu a vizuálne výstupy vo formáte PlantUML. Riešenie cieli na dve skupiny
používateľov, začiatočníka, ktorý potrebuje rýchlu orientáciu v projekte, a skúseného
programátora, ktorý vyžaduje technicky presné a konzistentné zhrnutie. Výsledkom je
praktický postup a prototyp nástroja, ktorý zrýchľuje onboarding a zlepšuje porozu-
menie architektúre a kľúčovým častiam kódu.

Kľúčové slová: pochopenie softvéru, dokumentácia, veľké jazykové modely, UML
diagramy, PlantUML

iv

Abstract

This diploma thesis focuses on supporting the understanding of existing software using
artificial intelligence tools. The motivation is to reduce the time and cost that expe-
rienced developers spend explaining source code to new team members. In this thesis,
we design and implement a tool that automatically processes a source-code repository,
performs static analysis, and uses a language model to generate clear documentation
and visual outputs in PlantUML format. The solution targets two user groups: a be-
ginner who needs quick orientation in the project, and an experienced programmer
who requires a technically accurate and consistent summary. The result is a practical
workflow and a prototype tool that speeds up onboarding and improves understanding
of the architecture and key parts of the code.

Keywords: software comprehension, documentation, large language models, UML
diagrams, PlantUML

v

vi

Obsah

Úvod 1

1 Motivácia 3

2 Ciele práce 5

3 Východiská práce 7

3.1 Využitie veľkých jazykových modelov (LLM) pri podpore pochopenia
softvéru . 7

3.2 Podpora porozumenia softvérových modelov pomocou LLM 8
3.3 Význam návrhu promptov pri využívaní LLM 8
3.4 Generovanie dokumentácie ku kódu pomocou LLM 9
3.5 Retrieval-Augmented Generation (RAG) 10
3.6 LangChain a LangGraph . 10

4 Výskum 13

4.1 Popis vyvinutého nástroja . 13
4.1.1 Hlavná charakteristika . 13
4.1.2 Získavanie zdrojového kódu . 14
4.1.3 Statická analýza kódu . 14
4.1.4 LLM agenty pre dokumentáciu a vizualizáciu 14
4.1.5 Hlavná riadiaca logika . 15

4.2 Funkcionálne požiadavky . 15
4.2.1 Požiadavky na prácu s repozitárom 15
4.2.2 Požiadavky na statickú analýzu zdrojového kódu 16
4.2.3 Požiadavky na vyhodnocovanie dôležitosti funkcií 16
4.2.4 Požiadavky na generovanie dokumentácie pomocou LLM 17
4.2.5 Požiadavky na generovanie UML diagramov 17
4.2.6 Požiadavky na generovanie inštalačnej príručky 17

4.3 Návrh riešenia a architektúra . 18
4.4 Použité technológie . 18

vii

4.5 Generovanie klasickej dokumentácie . 20
4.5.1 Statická analýza ako vstup pre dokumentáciu 20
4.5.2 Dokumentačný agent . 21
4.5.3 Reviewer agent . 21
4.5.4 Pipeline generovania dokumentácie 22
4.5.5 Výhody zapojenia dvoch agentov 23
4.5.6 Zhrnutie . 23

5 Výsledky a diskusia 25

Záver 27

Príloha A 31

viii

Úvod

1

2 Úvod

Kapitola 1

Motivácia

3

4 KAPITOLA 1. MOTIVÁCIA

Kapitola 2

Ciele práce

5

6 KAPITOLA 2. CIELE PRÁCE

Kapitola 3

Východiská práce

3.1 Využitie veľkých jazykových modelov (LLM) pri

podpore pochopenia softvéru

Veľké jazykové modely, ako napríklad ChatGPT, GitHub Copilot alebo Bard, predsta-
vujú významný posun v oblasti asistencie pri sofvérovom inžinierstve. Vedia generovať
zrozumiteľné, gramaticky správne a syntakticky korektné výstupy, majú potenciál vý-
razne podporiť proces porozumenia existujúcich softvérových systémov. [7]

V rámci onboardingu nových vývojárov alebo analýzy neznámeho systému môžu
LLM plniť viaceré úlohy:

• Generovanie prirodzenojazyčného popisu kódu: LLM môžu automaticky
vysvetliť význam tried, metód a modulov, čím znižujú potrebu manuálneho men-
torovania.

• Automatizované dopĺňanie komentárov a dokumentácie: Vývojári môžu
získať relevantnú dokumentáciu ku kódu bez nutnosti jej ručného písania, čo šetrí
čas a zvyšuje čitateľnosť.

• Transformácia kódu do vizuálnych modelov: V spojení s nástrojmi ako
PlantUML je možné automaticky generovať triedne alebo sekvenčné UML dia-
gramy, ktoré pomáhajú pri pochopení štruktúry systému.

• Poskytovanie spätnej väzby v reálnom čase: LLM môžu asistovať pri vývoji
prostredníctvom návrhov ďalších krokov alebo odporúčaní na opravu chýb v kóde.

Takéto použitie LLM umožňuje vývojárom pýtať sa otázky typu „Čo robí táto me-
tóda?“, „Na čo slúži tento modul?“ alebo „Ako spolu súvisia jednotlivé časti systému?“.
Model tak môže slúžiť ako mentor, ktorý zefektívni proces zaučenia nových členov tímu
a zníži záťaž skúsených vývojárov. [7]

7

8 KAPITOLA 3. VÝCHODISKÁ PRÁCE

Na druhej strane, využitie LLM prináša aj isté riziká. Ako upozorňuje Ozkaya, vý-
stupy modelov môžu byť síce gramaticky správne, ale nie vždy aj semanticky korektné.
Z dôvodu náhodnej povahy generovania textu môže dôjsť k šíreniu nesprávnych alebo
zavádzajúcich informácií. Rovnako je nutné dbať na kvalitu a zloženie trénovacích dát,
ktoré môžu obsahovať chyby. Z týchto dôvodov je potrebné doplniť využitie LLM o
kontrolné mechanizmy [7].

3.2 Podpora porozumenia softvérových modelov po-

mocou LLM

Porozumenie softvérových modelov, teda UML diagramov, patrí medzi kľúčové výzvy
v softvérovom inžinierstve. Pre nových členov vývojového tímu býva často náročné
zorientovať sa v komplexnej architektúre existujúcich systémov. Práve v tomto smere
môžu veľké jazykové modely výrazne pomôcť.

Podľa štúdie [2], ktorá hodnotila schopnosť LLM asistovať pri modelovaní a po-
chopení softvérových artefaktov, môžu tieto modely slúžiť ako interaktívni asistenti,
ktorí sú schopní:

• vysvetľovať časti UML modelu v ľudskej reči [2],

• odpovedať na otázky ohľadom štruktúry a správania systému [1, 2],

• generovať alebo dopĺňať časti modelu na základe textových požiadaviek alebo
existujúcich diagramov [1, 2],

• transformovať medzi rôznymi reprezentáciami ako je napríklad ľudská reč a UML
diagramy [1, 2].

3.3 Význam návrhu promptov pri využívaní LLM

Účinnosť veľkých jazykových modelov do veľkej miery závisí od kvality vstupov, ktoré
im používateľ poskytne. Tento proces je veľmi dôležitý pri využívaní generatívnej ume-
lej inteligencie v oblasti softvérového inžinierstva [4].

Správne navrhnutý prompt – teda textová požiadavka alebo otázka zadaná modelu
– má zásadný vplyv na kvalitu, presnosť a relevantnosť výstupu. V kontexte podpory
porozumenia softvéru to znamená, že:

• prompt musí jednoznačne špecifikovať, akú časť kódu alebo modelu chceme vy-
svetliť,

3.4. GENEROVANIE DOKUMENTÁCIE KU KÓDU POMOCOU LLM 9

• požiadavka by mala byť formulovaná čo najkonkrétnejšie, aby sa minimalizovala
generalizácia výsledku,

• je možné využívať few-shot príklady – ukážky očakávaného výstupu, ktoré modelu
naznačujú formu alebo štruktúru odpovede [4].

Prompt engineering nie je len technika, ale aj forma dizajnu komunikácie medzi
človekom a umelou inteligenciou [4]. V prípade vysvetľovania zdrojového kódu alebo
generovania UML diagramov zo špecifikácie je kvalitný prompt nevyhnutný na to, aby
model porozumel kontextu a požiadavke vývojára.

Pre potreby nástrojov zameraných na podporu nových vývojárov v tíme tak ná-
vrh vhodných promptov predstavuje dôležitú súčasť celého systému. Automatizácia
niektorých častí promptov môže zefektívniť interakciu a zvýšiť presnosť výstupov ge-
nerovaných LLM.

3.4 Generovanie dokumentácie ku kódu pomocou LLM

Jednou z významných aplikácií veľkých jazykových modelov v softvérovom inžinier-
stve je generovanie dokumentácie ku kódu. Tento proces môže výrazne zefektívniť on-
boarding nových vývojárov, znížiť záťaž skúsených kolegov a zlepšiť udržiavateľnosť
softvéru.

Štúdia Guelmana a kol. [3] ukazuje, že LLM sú schopné generovať dokumentáciu
ku kódu s kvalitou porovnateľnou s ľudskou, najmä v prípadoch, keď je kód dobre
štruktúrovaný. Autori realizovali rozsiahlu analýzu a zistili, že:

• modely ako ChatGPT dosahujú vysokú presnosť pri popise účelu funkcií a pre-
menných,

• generované komentáre bývajú často detailnejšie ako tie, ktoré píšu vývojári ma-
nuálne,

• vývojári hodnotili výstupy modelov ako užitočné a niekedy dokonca preferovali
automaticky generovanú dokumentáciu pred ľudskou.

Zároveň však štúdia upozorňuje na limity: v prípadoch, kde je kód zložitejší alebo
neobsahuje dostatočne výrečné pomenovania, kvalita generovaných komentárov klesá.
Dôležitou súčasťou celého procesu je preto schopnosť modelu rozpoznať kontext a po-
menovania symbolov. [3]

10 KAPITOLA 3. VÝCHODISKÁ PRÁCE

3.5 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) je moderný prístup, ktorý rozširuje možnosti
LLM tým, že im pri generovaní odpovedí „dohľadáva“ dodatočné informácie z externých
zdrojov. Klasické LLM pracujú len s dátami, na ktorých boli vytrénované, čo znamená,
že nemusia vedieť poskytnúť úplne aktuálne informácie alebo presné odborné detaily
mimo svojho trénovacieho datasetu. RAG tento problém rieši tak, že ešte pred samot-
ným generovaním doplní model o kontext získaný z vyhľadávacieho mechanizmu. Tým
znižuje chybovosť odpovedí a zlepšuje ich presnosť [5].

Základný princíp RAG je založený na dvoch krokoch: retrieval (vyhľadávanie) a ge-
neration (generovanie). Najskôr sa používateľská query prevedie do vektorového pries-
toru pomocou embeddingov. Takto reprezentovaná query sa porovná s obsahom ulo-
ženým vo vektorovej databáze. Tá môže obsahovať dokumenty, technické špecifikácie,
interné materiály alebo iné textové zdroje. Systém vyberie najrelevantnejšie dokumenty
a vloží ich ako dodatočný kontext do promptu. Ten je následne odoslaný jazykovému
modelu. Model potom negeneruje odpoveď len z vlastnej „pamäte“, ale aj na základe
práve načítaných informácií [5].

Významnou výhodou RAG je, že umožňuje pracovať s novými a špecifickými údajmi
bez potreby model opätovne trénovať. Stačí zmeniť alebo doplniť vstupnú databázu a
kvalita aj obsah výstupov sa tomu okamžite prispôsobia. Systém je teda veľmi flexi-
bilný a vhodný najmä v prostrediach, kde sa informácie rýchlo menia – napríklad pri
technickej dokumentácii, právnych textoch, zákazníckej podpore, podnikových dátach
alebo vedeckých publikáciách [5].

RAG zároveň pomáha znižovať riziko tzv. halucinácií, pretože generovaný text sa
opiera o reálne a overiteľné zdroje. Používateľ navyše môže zistiť, z ktorých dokumen-
tov model čerpal, čo zvyšuje transparentnosť aj dôveryhodnosť celého systému. Tento
prístup je do istej miery podobný akademickému citovaniu, kde možno každé tvrdenie
spätne overiť v pôvodnom zdroji [5].

V širšom kontexte vývoja umelej inteligencie predstavuje RAG dôležitý posun v
tom, ako sú generatívne modely prepojené s externým svetom. Model už nie je iba
statický generátor textu na základe historických dát, ale stáva sa dynamickým, kon-
textovo citlivým systémom. Vďaka tomu dokáže poskytovať presné, odborné a zároveň
aktuálne informácie v takmer reálnom čase [5].

3.6 LangChain a LangGraph

V tejto práci používame dve úzko príbuzné technológie z ekosystému vývoja aplikácií
nad veľkými jazykovými modelmi – LangChain a LangGraph. Ich kombinácia nám
umožňuje navrhovať a implementovať komplexné, viacagentové systémy, ktoré je možné

3.6. LANGCHAIN A LANGGRAPH 11

relatívne jednoducho rozširovať. Keďže jadrom nášho riešenia je orchestrácia viacerých
agentov, prirodzene sa ponúka využitie oboch nástrojov.

LangChain predstavuje všeobecný framework na budovanie aplikácií nad LLM. Po-
skytuje sadu znovupoužiteľných komponentov (reťazce, nástroje, pamäť, retrievery,
integrácie na modely a vektorové databázy) a umožňuje ich skladať do sekvenčných
alebo mierne vetvených workflowov. [6] V praxi to znamená, že vývojár namiesto pria-
meho volania modelu rieši vyššiu úroveň logiky, napríklad „vezmi vstup, doplň kontext
z dokumentov, zavolaj model, následne odpoveď uprac a zaloguj“ . Takýto prístup vý-
razne skracuje čas potrebný na prototypovanie a zároveň podporuje znovupoužiteľnosť
častí riešenia.

LangGraph naopak stavia na základoch LangChainu a rozširuje ich o výslovne gra-
fový model riadenia. Jednotlivé kroky workflowu sú reprezentované ako uzly (nodes)
a prechody medzi nimi ako hrany (edges). Namiesto lineárneho reťazenia krokov tak
vzniká orientovaný graf, v ktorom je možné modelovať vetvenie, slučky, opakované roz-
hodovanie a zdieľaný stav medzi agentmi. [6] V kontexte tejto práce je to kľúčové
najmä pre viacagentový scenár, v ktorom nad jedným repozitárom kódu postupne pra-
cuje „generátor textu“ a „reviewer“ .

Porovnanie týchto prístupov ukazuje, že LangChain sa typicky odporúča pre jedno-
duchšie, prevažne lineárne alebo len mierne vetvené workflowy. Tam stačí rýchlo poskla-
dať sekvenciu volaní modelu a pomocných nástrojov. LangGraph je naopak vhodnejší
pre robustnejšie prostredia, kde je potrebné udržiavať stav medzi krokmi, koordino-
vať viacerých agentov a umožniť im opakovane sa rozhodovať na základe priebežných
výsledkov. To nám pomáha k tomu, aby nástroj vediel iteratívne analyzovať zdrojový
kód, rozhodovať o ďalších krokoch (napr. či zapojiť kontrolného agenta) a v prípade
potreby sa vrátiť k predchádzajúcim fázam spracovania. [6]

Napokon je vhodné zdôrazniť, že LangChain a LangGraph nevystupujú izolovane,
ale sú súčasťou širšieho ekosystému nástrojov pre budovanie agentových LLM aplikácií.
Často sa používajú spolu so sprievodnými nástrojmi, ako sú LangSmith a LangFlow.
Vzniká tak technologické prostredie, ktoré umožňuje nielen implementáciu samotného
nástroja, ale aj jeho testovanie, ladenie a potenciálne nasadenie v produkčnom pro-
stredí. [6]

12 KAPITOLA 3. VÝCHODISKÁ PRÁCE

Kapitola 4

Výskum

4.1 Popis vyvinutého nástroja

Náš softvér je určený na automatizovanú analýzu, dokumentovanie a vizualizáciu zdro-
jového kódu Python projektov. Návrh vychádza z dvoch kľúčových prípadov použitia,
ktoré odrážajú rozdielne potreby a očakávania užívateľov pri práci so zdrojovým kó-
dom:

• Newcomer (začiatočník vo firme) – používateľ, ktorý sa prvýkrát stretáva
s existujúcim kódom a potrebuje rýchlo pochopiť architektúru projektu, účel
jednotlivých modulov a význam najdôležitejších funkcií. Pre takéhoto užívateľa
nástroj poskytuje ucelenú technickú dokumentáciu, vizuálne UML diagramy, su-
marizáciu tried a funkcií, a taktiež príručky ku softvéru.

• Senior programátor – skúsený vývojár, ktorý vyžaduje efektívne nástroje na
reverzné inžinierstvo, vyhľadávanie kritických častí systému, či analýzu architek-
túry a závislostí. Pre túto skupinu poskytuje systém metriky z AST analýzy, iden-
tifikáciu najdôležitejších funkcií na základe vlastného indexu dôležitosti, detailné
UML diagramy celého systému a nástroje umožňujúce orientáciu v rozsiahlych
projektových štruktúrach. Takisto skúsenému vývojaŕovi systém poskytne rýchle
spravenie dokumentácie pre zákazníka.

Vďaka týmto dvom perspektívam je nástroj flexibilný a univerzálny: nových členov
tímu rýchlo uvedie do problematiky, zatiaľ čo skúseným vývojárom poskytne podklady
pre technické rozhodovanie a hlbšiu analýzu projektu.

4.1.1 Hlavná charakteristika

Nástroj predstavuje modulárny systém, v ktorom jednotlivé komponenty (ďalej agenti)
vykonávajú samostatné kroky spracovania zdrojového kódu. Každý agent je zodpo-

13

14 KAPITOLA 4. VÝSKUM

vedný za konkrétnu úlohu od analýzy a extrakcie štruktúry programu cez generovanie
technickej dokumentácie až po tvorbu UML diagramov pomocou LLM.

Hlavnou myšlienkou vývoja bola potreba automatizovať a zjednodušiť proces ana-
lýzy existujúceho kódu, ako aj poskytnúť konzistentné výstupy vhodné pre technickú
dokumentáciu a prezentáciu architektúry systémov.

4.1.2 Získavanie zdrojového kódu

Prvým krokom spracovania je automatizované stiahnutie repozitára zo služby GitHub.
O túto časť systému sa stará modul RepositoryReader, ktorý zabezpečuje:

• korektné klonovanie repozitára pomocou knižnice GitPython,

• vytvorenie dočasnej pracovnej kópie v lokálnom adresári,

• vyhľadanie všetkých súborov typu .py,

• načítanie ich obsahu do pamäťovej štruktúry pre ďalšie spracovanie.

Týmto spôsobom je možné analyzovať aj väčšie projekty bez toho, aby bolo nutné
zadefinovať presnú štruktúru adresárov alebo manuálne prechádzať jednotlivé súbory.

4.1.3 Statická analýza kódu

Po získaní zdrojových súborov nasleduje fáza statickej analýzy založenej na abstrakt-
nom syntaktickom strome (AST). Analýza zahŕňa:

• extrakciu definícií funkcií a tried,

• identifikáciu atribútov a metód v rámci tried,

• analýzu importov a závislostí medzi modulmi,

• získavanie metrických údajov, ako sú počet riadkov, cyklomatická zložitosť či
počet volaní.

4.1.4 LLM agenty pre dokumentáciu a vizualizáciu

Kľúčovým prvkom našeho softvéru je integrácia veľkého jazykového modelu prostred-
níctvom platformy Ollama a knižnice LangChain/Langgraph. Výsledkom je :

• generovať technickú dokumentáciu pre jednotlivé súbory,

• sumarizovať funkcionalitu tried a modulov,

4.2. FUNKCIONÁLNE POŽIADAVKY 15

• vytvárať inštalačné príručky s detailným návodom na použitie,

• tvoriť UML diagramy (komponentový diagram a diagram tried) na základe ana-
lýzy zdrojového kódu.

LLM agenti nepracujú izolovane – mnohé výstupy sú vzájomne prepojené. Naprí-
klad class diagram pre celý systém je kombináciou deterministickej analýzy (identifi-
kácia atribútov a metód v AST) a generatívnej analýzy (odvodzovanie vzťahov medzi
triedami prostredníctvom LLM).

4.1.5 Hlavná riadiaca logika

Celý proces orchestruje skript main.py, ktorý poskytuje používateľovi interaktívne
menu. Na základe výberu používateľa je spustená príslušná úloha:

• generovanie dokumentácie k zdrojovým súborom,

• zobrazenie desiatich najdôležitejších funkcií podľa vlastného indexu dôležitosti,

• vytvorenie komponentového UML diagramu,

• vytvorenie diagramu tried pre celý projekt,

• generovanie komplexnej inštalačnej príručky.

Takýto prístup umožňuje flexibilné rozširovanie funkcionality o ďalších agentov a
spracovateľské kroky bez zásahu do existujúceho API.

4.2 Funkcionálne požiadavky

Funkcionálne požiadavky znamenajú očakávané správanie systému , ktoré sú nevy-
hnutné pre automatizovanú analýzu, dokumentáciu a vizualizáciu Python projektov.
Požiadavky sú formulované s ohľadom na dve hlavné skupiny používateľov: nových
členov projektov, ktorí potrebujú rýchlo porozumieť existujúcemu kódu, a seniorných
programátorov, ktorí očakávajú podrobnú technickú analýzu a podporu pri práci so
zložitejšími architektúrami.

4.2.1 Požiadavky na prácu s repozitárom

Systém musí umožniť načítanie verejného zo stránky GitHub. Používateľ zadá iba URL
a nástroj vykoná:

• automatické stiahnutie repozitára do dočasného adresára,

16 KAPITOLA 4. VÝSKUM

• identifikáciu všetkých súborov typu .py,

• načítanie ich obsahu pre ďalšie spracovanie,

• bezpečné odstránenie dočasného adresára po ukončení analýzy.

Tieto funkcie umožňujú používateľovi pracovať s projektmi bez predchádzajúcej
lokálnej prípravy a zaručujú konzistentný proces analýzy.

4.2.2 Požiadavky na statickú analýzu zdrojového kódu

Po načítaní projektu musí systém vykonať statickú analýzu pomocou abstraktného
syntaktického stromu (AST). Systém musí byť schopný:

• identifikovať všetky triedy a ich atribúty,

• identifikovať metódy a funkcie definované v súboroch,

• extrahovať importy a vzťahy medzi modulmi,

• získavať rôzne metrické údaje, ako počet riadkov kódu, počet volaní funkcií alebo
cyklomatickú zložitosť.

Tieto údaje tvoria základ pre ďalšie formy analýzy a vizualizácie.

4.2.3 Požiadavky na vyhodnocovanie dôležitosti funkcií

Systém musí vypočítať index dôležitosti pre každú funkciu alebo metódu v projekte.
Tento index musí zohľadňovať výsledky statickej analýzy, čo umožňuje identifikovať
najkritickejšie časti aplikácie. Systém musí vedieť:

• vypočítať dôležitosť na základe viacerých metrík,

• zoradiť funkcie podľa významu,

• zobraziť používateľovi najdôležitejšie funkcie v prehľadnej podobe.

Táto funkcionalita je dôležitá najmä pre seniorných programátorov, ktorí potrebujú
rýchlo identifikovať kľúčové prvky architektúry.

4.2. FUNKCIONÁLNE POŽIADAVKY 17

4.2.4 Požiadavky na generovanie dokumentácie pomocou LLM

Náš systém musí priamo zo zdrojového kódu generovať technickú dokumentáciu. Ge-
nerovanie sa deje kvôli LLM agentovi. Systém musí:

• vytvoriť popisy pre každý analyzovaný súbor,

• vysvetliť účel súborov, funkcií a tried,

• vytvárať konzistentnú a technicky správnu dokumentáciu,

• umožniť jej revíziu pomocou sekundárneho kontrolného agenta,

• uložiť výsledky do jedného výstupného dokumentu.

Tento proces poskytuje novým členom tímu rýchly prehľad o logike projektu.

4.2.5 Požiadavky na generovanie UML diagramov

Požiadavkou našeho softvéru je umožňovať automatickú vizualizáciu architektúry pro-
jektu pomocou UML diagramov. Musí poskytovať:

• komponentový diagram založený na vzťahoch medzi modulmi,

• diagram tried pre celý projekt s atribútmi a metódami,

• generovanie vzťahov medzi triedami pomocou LLM,

• export diagramov do formátu kompatibilného s PlantUML.

Diagramy sú dôležitým nástrojom pri orientácii v architektúre rozsiahlych projek-
tov.

4.2.6 Požiadavky na generovanie inštalačnej príručky

Systém musí byť schopný vytvoriť kompletnú inštalačnú príručku pre daný projekt.
Príručka musí obsahovať:

• systémové požiadavky,

• postup klonovania repozitára,

• konfiguráciu virtuálneho prostredia,

• inštaláciu závislostí,

• konfiguráciu LLM modelov (ak sú potrebné),

18 KAPITOLA 4. VÝSKUM

• návod na spustenie,

• riešenie najčastejších problémov.

Tento výstup slúži ako rýchly manuál pre nových používateľov projektu.

4.3 Návrh riešenia a architektúra

Na základe definovaných cieľov a požiadaviek som náš systém navrhol ako modulárnu
aplikáciu. Každý modul má jasne definované zodpovednosti a je dostatočne oddelený
od ostatných modulov. Architektúra tohoto systému je znázornená v obrázku 4.1.

Obr. 4.1: Architektonický diagram systému

4.4 Použité technológie

Táto kapitola opisuje technologický základ vyvinutého nástroja. Nasledujúci zoznam
sumarizuje všetky hlavné technológie použité pri vývoji nášho softvéru:

• Python 3 – primárny programovací jazyk projektu.

• GitPython – knižnica na automatizovanú prácu s Git repozitármi.

• AST (Abstract Syntax Tree) modul – nástroj na statickú analýzu Python kódu.

• LangChain – framework pre orchestráciu LLM agentov.

• Ollama – lokálna platforma pre spúšťanie veľkých jazykových modelov.

• Llama 3.2 (resp. iné LLM modely) – jazykový model používaný na generovanie
dokumentácie a UML diagramov.

4.4. POUŽITÉ TECHNOLÓGIE 19

• PlantUML – štandardný formát pre textovú definíciu UML diagramov.

• Markdown – formát pre výstupné dokumenty (napr. inštalačná príručka).

• GitHub – zdroj projektových repozitárov.

V nasledujúcej časti sú jednotlivé technológie popísané detailnejšie, avšak bez for-
málneho členenia na podsekcie, aby bol text plynulejší a vhodný do naratívnej časti
práce.

Python 3 tvorí základ celého projektu a predstavuje hlavný programovací jazyk
nástroja. Využíva sa na prácu s dátovými štruktúrami, spracovanie textu a zdrojových
súborov, statickú analýzu prostredníctvom modulu AST, implementáciu jednotlivých
agentov aj komunikáciu s jazykovými modelmi. Python sme zvolili pre svoju flexibilitu
a aaj pre veľký výber knižníc. Tak isto pre integráciu ollama sme potrebovali zvoliť
python.

GitPython je knižnica umožňujúca komunikáciu s Git repozitármi priamo z pro-
stredia Pythonu. V projekte zabezpečuje klonovanie vstupných repozitárov na základe
URL, prácu s dočasnými adresármi a ošetrenie chýb pri klonovaní napríklad neplatná
URL, neexistujúci repozitár alebo konfliktný stav cieľového priečinka. Vďaka tomu
môže nástroj bez manuálneho zásahu používateľa načítať zdrojový kód ľubovoľného
projektu hostovaného na GitHube či v inom Git serveri.

AST modul (ast) je súčasťou štandardnej knižnice Pythonu a umožňuje previesť
zdrojový kód do podoby abstraktného syntaktického stromu. Projekt tento modul vy-
užíva na identifikáciu tried, metód a funkcií, extrakciu atribútov tried, analýzu impor-
tov a výpočet metrických údajov, ako je počet volaní funkcií či približná cyklomatická
zložitosť. Slúži ako input pre generovanie dokumentácie aj UML diagramov a zároveň
minimalizuje riziko halucinácií .

LangChain predstavuje framework pre orchestráciu veľkých jazykových modelov
a ich integráciu do komplexnejších pipeline. V rámci nástroja umožňuje vytvárať tzv.
LLM agentov, ktorí kombinujú prompt, konkrétny model a doplnkovú logiku. Týmto
spôsobom vznikajú samostatní agenti zodpovední za tvorbu dokumentácie, za revíziu
(review) vygenerovaných textov, za generovanie UML diagramov či za tvorbu inštalač-
nej príručky. LangChain poskytuje jednotné rozhranie pre prácu s modelmi a uľahčuje
kompozíciu viacerých krokov spracovania do jedného konzistentného pracovného toku.

Ollama je lokálna platforma, ktorá umožňuje spúšťanie veľkých jazykových mode-
lov priamo na počítači používateľa. V našom nástroji slúži ako infraštruktúrna vrstva
pre beh LLM, takže všetky dotazy smerujú do lokálneho runtime prostredia namiesto
do cloudových služieb. To umožňuje spracovanie zdrojového kódu bez jeho odosielania
na externé servery. Týmto sa posilňuje bezpečnosť a súlad s internými bezpečnost-

20 KAPITOLA 4. VÝSKUM

nými politikami. Zároveň to znižuje prevádzkové náklady pri opakovanom používaní
nástroja.

Model Llama 3.2 slúži ako primárny jazykový model. V projekte je nasadený
na generovanie technickej dokumentácie zdrojového kódu, sumarizáciu architektúry
modulov, návrh PlantUML diagramov tried a komponentov a tvorbu inštalačných prí-
ručiek. Tento model bol zvolený pre dobrý pomer medzi kvalitou výstupom, výkonom
a možnosťou lokálneho spúšťania cez Ollamu.

PlantUML je textový formát a nástroj určený na tvorbu UML diagramov pomocou
jednoduchého textového zápisu. V nástroji sa využíva na generovanie komponentových
diagramov na základe importných vzťahov medzi modulmi a diagramov tried, ktoré
vznikajú kombináciou AST analýzy a LLM interpretácie. Textová povaha PlantUML
umožňuje jednoduché verzovanie diagramov v Gite, ich integráciu do dokumentácie a
automatizovanú aktualizáciu pri opakovanej analýze projektu.

Markdown je značkovací jazyk, ktorý sa v projekte používa najmä na generovanie
inštalačných príručiek a ďalších textových výstupov. Jeho výhodou je dobrá čitateľnosť
v surovej textovej podobe, široká podpora na platforme GitHub a možnosť jednodu-
chého exportu do HTML či PDF. Vygenerovaná dokumentácia tak môže byť priamo
vložená do repozitára ako README alebo doplnkový dokument bez potreby ďalšieho
spracovania.

GitHub plní v nástroji úlohu základného zdroja analyzovaných projektov. Git-
Hub tak predstavuje prirodzené prostredie pre získavanie vstupného kódu moderných
softvérových projektov, na ktorých je demonštrovaná funkcionalita nástroja.

4.5 Generovanie klasickej dokumentácie

Jednou z najdôležitejších funkcionalít nášho nástroja je schopnosť automaticky genero-
vať dokumentáciu zdrojového kódu. Táto dokumentácia na presné a technicky korektné
zhrnutie architektúry. Celý proces je realizovaný kombináciou statickej analýzy kódu a
kooperáciou dvoch nezávislých LLM agentov: dokumentačného agenta a reviewer
agenta.

4.5.1 Statická analýza ako vstup pre dokumentáciu

Pred samotným generovaním dokumentácie prebieha statická analýza zdrojového kódu.
Jej cieľom je poskytnúť LLM modelu štruktúrované a presné informácie o obsahu
súborov. Pre každý Python súbor sa identifikujú:

• názvy a umiestnenie funkcií a tried,

• atribúty a metódy tried,

4.5. GENEROVANIE KLASICKEJ DOKUMENTÁCIE 21

• importované moduly,

• základná štruktúra súboru a jeho zodpovednosť.

Výstup statickej analýzy výrazne znižuje pravdepodobnosť nesprávnych interpretá-
cií zo strany modelu a zároveň zaručuje konzistentnosť vygenerovaných textov.

4.5.2 Dokumentačný agent

Dokumentačný agent predstavuje primárny LLM modul zodpovedný za vytvorenie
prvej verzie technickej dokumentácie. Tento agent dostáva ako vstup:

• obsah zdrojového súboru,

• výsledky AST analýzy,

• doplnkové metadáta (cesta súboru, modulová štruktúra, ap.).

Jeho úlohou je:

• vysvetliť účel súboru a jeho komponentov,

• popísať triedy a funkcie v kontexte celého systému,

• zhrnúť dôležité mechanizmy fungovania modulu,

• generovať konzistentný a technický text vhodný do dokumentácie.

Agent pracuje deterministicky, s dôrazom na technickú presnosť a štruktúrovaný
výstup.

4.5.3 Reviewer agent

Po vytvorení pôvodnej verzie dokumentácie prechádza výstup ďalším stupňom – kon-
trolou pomocou reviewer agenta. Tento agent má charakter nezávislého hodnotiteľa,
ktorý vykonáva:

• kontrolu technickej presnosti,

• hľadanie nekonzistencií medzi kódom a dokumentáciou,

• návrhy na doplnenie nepopísaných častí,

• kontrolu správnosti terminológie,

• zlepšovanie čitateľnosti a odbornosti textu.

22 KAPITOLA 4. VÝSKUM

Obr. 4.2: Kód pre ďalšie zapojenie DocMaker agenta

Po spracovaní údajov sa rozhoduje v systéme ako je demonštrované v kóde 4.2.
Reviewer agent dostáva ako vstup:

• pôvodnú dokumentáciu od hlavného agenta,

• plný obsah zdrojového súboru,

• výsledky statickej analýzy.

Týmto spôsobom kontrolná fáza nie je založená na heuristickom porovnávaní textu,
ale na hlbokom porozumení samotnému kódu. Výsledkom je oveľa kvalitnejšia doku-
mentácia, ktorá odstraňuje nepresnosti alebo príliš všeobecné formulácie.

4.5.4 Pipeline generovania dokumentácie

Celý proces generovania dokumentácie prebieha v nasledovných krokoch:

4.5. GENEROVANIE KLASICKEJ DOKUMENTÁCIE 23

1. Používateľ zvolí možnosť „Generovať dokumentáciu“.

2. Systém automaticky naklonuje cieľový GitHub repozitár.

3. Statická analýza pomocou AST identifikuje štruktúru kódu.

4. Dokumentačný agent vytvorí prvý návrh dokumentácie.

5. Reviewer agent skontroluje a prípadne upraví text.

6. Výsledný dokument sa uloží ako jeden súhrnný výstup.

Proces podporuje tvorbu dokumentácie pre:

• všetky súbory v projekte,

• jediný súbor podľa výberu používateľa.

4.5.5 Výhody zapojenia dvoch agentov

Použitie dvojice kooperujúcich agentov prináša významné výhody:

• Vyššia presnosť – každý text je automaticky skontrolovaný.

• Eliminácia halucinácií – reviewer porovnáva dokumentáciu s reálnym kódom.

• Kvalitnejší text – text prechádza dvoma fázami spracovania.

• Lepšia konzistentnosť – systém udržiava rovnaký tón a štruktúru naprieč pro-
jektom.

4.5.6 Zhrnutie

Výslednú podobu generovanej dokumentácie ilustruje obrázok 4.3. Na ukážke je zo-
brazený výstup pre jeden z analyzovaných modulov, kde nástroj automaticky vytvoril
súvislý technický text. Dokumentácia obsahuje:

• stručný úvodný popis modulu a jeho zodpovednosti v rámci systému,

• prehľad hlavných tried a funkcií vrátane ich účelu,

• vysvetlenie väzieb na iné časti projektu (napríklad na pomocné utility alebo LLM
agenta),

• zhrnutie typických scenárov použitia danej časti kódu.

24 KAPITOLA 4. VÝSKUM

Obr. 4.3: Ukážka výslednej generovanej dokumentácie pre vybraný modul projektu.

Kapitola 5

Výsledky a diskusia

25

26 KAPITOLA 5. VÝSLEDKY A DISKUSIA

Záver

27

28 Záver

Literatúra

[1] F. J. Alcaide, J. R. Romero, and A. Ramírez. Can explainable artificial intelli-
gence support software modelers in model comprehension? Software and Systems
Modeling, 2025.

[2] J. Cámara, J. Troya, L. Burgueño, et al. On the assessment of generative ai in
modeling tasks: an experience report with chatgpt and uml. Software and Systems
Modeling, 22:781–793, 2023.

[3] Ian Guelman, Arthur Gregório Leal, Laerte Xavier, and Marco Tulio Valente. Using
large language models to document code: A first quantitative and qualitative as-
sessment, 2024.

[4] IBM. What is prompt engineering?, 2025. Accessed: 2025-05-12.

[5] Rick Merritt. What is retrieval-augmented generation, aka rag?, 2025. Accessed:
YYYY-MM-DD.

[6] Ryan Ong. Langchain vs langgraph vs langsmith vs langflow: Key differences ex-
plained, September 2025. Accessed: 2025-12-11.

[7] Ipek Ozkaya. Application of large language models to software engineering tasks:
Opportunities, risks, and implications. IEEE Software, 40(3):4–8, 2023.

29

30 LITERATÚRA

Príloha A:

31

	Úvod
	Motivácia
	Ciele práce
	Východiská práce
	Využitie veľkých jazykových modelov (LLM) pri podpore pochopenia softvéru
	Podpora porozumenia softvérových modelov pomocou LLM
	Význam návrhu promptov pri využívaní LLM
	Generovanie dokumentácie ku kódu pomocou LLM
	Retrieval-Augmented Generation (RAG)
	LangChain a LangGraph

	Výskum
	Popis vyvinutého nástroja
	Hlavná charakteristika
	Získavanie zdrojového kódu
	Statická analýza kódu
	LLM agenty pre dokumentáciu a vizualizáciu
	Hlavná riadiaca logika

	Funkcionálne požiadavky
	Požiadavky na prácu s repozitárom
	Požiadavky na statickú analýzu zdrojového kódu
	Požiadavky na vyhodnocovanie dôležitosti funkcií
	Požiadavky na generovanie dokumentácie pomocou LLM
	Požiadavky na generovanie UML diagramov
	Požiadavky na generovanie inštalačnej príručky

	Návrh riešenia a architektúra
	Použité technológie
	Generovanie klasickej dokumentácie
	Statická analýza ako vstup pre dokumentáciu
	Dokumentačný agent
	Reviewer agent
	Pipeline generovania dokumentácie
	Výhody zapojenia dvoch agentov
	Zhrnutie

	Výsledky a diskusia
	Záver
	Príloha A

