UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PODPORA POCHOPENIA SOFTVERU
DIPLOMOVA PRACA

2026
Bc. TEODOR FUCEK

UNIVERZITA KOMENSKEHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PODPORA POCHOPENIA SOFTVERU

Studij ny program:
étudij ny odbor:

Skoliace pracovisko:

Skolitel:

Bratislava, 2026
Be. Teodor Fucek

DIPLOMOVA PRACA

Aplikované informatika
Informatika

Katedra aplikovanej informatiky
doc. Ing. Ivan Polasek, PhD.

30535962

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Teodor Fucek

Studijny program: aplikovana informatika (Jednoodborové stadium,
magistersky II. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk zaverecnej prace: slovensky

Sekundarny jazyk: anglicky

Nazov: Podpora pochopenia softvéru

Supporting software comprehension

Anotacia: Kazda softvérova spolo¢nost’ si ceni svojich kvalitnych expertov a ich Cas, ktory
musia venovat’ novoprijatym zamestnancom a zaciato¢nikom na vysvetlenie
konkrétneho obsahu a kontextu zdrojového koédu. Vysvetlovanie neznameho
systému a jeho jednotlivych elementov a modulov, metdd a tried pomocou Al
pre zaciato¢nika v time aZ po zobrazenie modelu (napr. UML diagramu tried
alebo UML sekvencného diagramu) cez PlantUML by mohol finan¢ne aj ¢asovo
tento proces zefektivnit’.

Ciel’: Navrhnite postup vyuzitia Al pri generovani dokumentacie alebo interaktivhom
vysvetlovani softvéru.

Veduci: doc. Ing. Ivan Polasek, PhD.
Katedra: FMFI.KALI - Katedra aplikovanej informatiky
Vedici katedry: doc. RNDr. Tatiana Jajcayova, PhD.

Datum zadania: 06.11.2024

Datum schvalenia: 08.11.2024 prof. RNDr. Roman Durikovi¢, PhD.

garant $tudijného programu

Student veduci prace

Pod akovanie

i1

Abstrakt

Tato diplomova préaca sa zameriava na podporu pochopenia existujiceho softvéru po-
mocou nastrojov umelej inteligencie. Motivaciou je znizit ¢as a naklady, ktoré skuseni
vyvojari venuju vysvetlovaniu zdrojového kédu novym ¢lenom timu. V praci navrhu-
jeme a implementujeme nastroj, ktory automaticky spracuje repozitar so zdrojovym
kodom, vykoné statickt analyzu a pomocou jazykového modelu vygeneruje prehladnu
dokumentaciu a vizualne vystupy vo forméte PlantUML. RieSenie cieli na dve skupiny
pouzivatelov, zaciato¢nika, ktory potrebuje rychlu orientaciu v projekte, a skuseného
programatora, ktory vyzaduje technicky presné a konzistentné zhrnutie. Vysledkom je
prakticky postup a prototyp nastroja, ktory zrychluje onboarding a zlepSuje porozu-

menie architektire a kli¢ovym castiam kodu.

Krluacové slova: pochopenie softvéru, dokumentacia, velké jazykové modely, UML
diagramy, PlantUML

iv

Abstract

This diploma thesis focuses on supporting the understanding of existing software using
artificial intelligence tools. The motivation is to reduce the time and cost that expe-
rienced developers spend explaining source code to new team members. In this thesis,
we design and implement a tool that automatically processes a source-code repository,
performs static analysis, and uses a language model to generate clear documentation
and visual outputs in PlantUML format. The solution targets two user groups: a be-
ginner who needs quick orientation in the project, and an experienced programmer
who requires a technically accurate and consistent summary. The result is a practical
workflow and a prototype tool that speeds up onboarding and improves understanding

of the architecture and key parts of the code.

Keywords: software comprehension, documentation, large language models, UML
diagrams, PlantUML

vi

Obsah

Uvod

1 Motivacia

2 Ciele prace

3 Vychodiska prace
3.1 Vyuzitie velkych jazykovych modelov (LLM) pri podpore pochopenia

SOftveru,

Podpora porozumenia softvérovych modelov pomocou LLM

Vyznam navrhu promptov pri vyuzivani LLM

Generovanie dokumentécie ku kédu pomocou LLM
Retrieval-Augmented Generation (RAG)

LangChain a LangGraph

4.1 Popis vyvinutého néstroja

Hlavna charakteristika
Ziskavanie zdrojového koduo
Statickd analyza kéduo
LLM agenty pre dokumentaciu a vizualizaciu

Hlavna riadiaca logika

Funkcionalne poziadavky

3.2
3.3
3.4
3.5
3.6
4 Vyskum
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

Poziadavky na pracu s repozitarom
Poziadavky na statickt analyzu zdrojového kédu
Poziadavky na vyhodnocovanie délezitosti funkeii
Poziadavky na generovanie dokumentacie pomocou LLM
Poziadavky na generovanie UML diagramov

Poziadavky na generovanie instalacnej prirucky

4.3 N&avrh riesenia a architektara

4.4 Pouzité technologieo

vii

4.5 Generovanie klasickej dokumentacie

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6

Staticka analyza ako vstup pre dokumentaciu
Dokumentacény agent
Reviewer agent oL
Pipeline generovania dokumentacie
Vyhody zapojenia dvoch agentov
Zhrnutie

5 Vysledky a diskusia

Zaver

Priloha A

viil

25

27

31

Uvod

Uvod

Kapitola 1

Motivacia

KAPITOLA 1. MOTIVACIA

Kapitola 2

Ciele prace

KAPITOLA 2. CIELE PRACE

Kapitola 3

Vychodiska prace

3.1 Vyuzitie velkych jazykovych modelov (LLM) pri
podpore pochopenia softvéru

Velké jazykové modely, ako napriklad ChatGPT, GitHub Copilot alebo Bard, predsta-
vuji vyznamny posun v oblasti asistencie pri sofvérovom inzinierstve. Vedia generovat
zrozumitelné, gramaticky spravne a syntakticky korektné vystupy, majua potencial vy-
razne podporit proces porozumenia existujucich softvérovych systémov. |7]

V ramci onboardingu novych vyvojarov alebo analyzy nezndmeho systému mozu

LLM plnit viaceré tulohy:

e Generovanie prirodzenojazycéného popisu kédu: LLM mo6zu automaticky
vysvetlit vyznam tried, metéd a modulov, ¢im znizuji potrebu manualneho men-

torovania.

e Automatizované doplhanie komentarov a dokumentéacie: Vyvojari mozu
ziskat relevantni dokumentaciu ku kédu bez nutnosti jej ru¢ného pisania, ¢o Setri

Cas a zvySuje Citatelnost.

e Transforméacia kédu do vizualnych modelov: V spojeni s nastrojmi ako
PlantUML je mozné automaticky generovat triedne alebo sekvenéné UML dia-

gramy, ktoré pomahaju pri pochopeni struktury systému.

e Poskytovanie spatnej viazby v redlnom ¢ase: LLM mozu asistovat pri vyvoji

prostrednictvom navrhov dalsich krokov alebo odportu¢ani na opravu chyb v kdde.

Takéto pouzitie LLM umoziuje vyvojarom pytat sa otézky typu ,Co robf tato me-
toda?”, ,Na ¢o slazi tento modul?* alebo ,,Ako spolu stivisia jednotlivé ¢asti systému?*.
Model tak moze sliuzit ako mentor, ktory zefektivni proces zaucenia novych ¢lenov timu

a znizi zataz skasenych vyvojarov. |7]

8 KAPITOLA 3. VYCHODISKA PRACE

Na druhej strane, vyuzitie LLM prinésa aj isté rizikd. Ako upozornuje Ozkaya, vy-
stupy modelov mézu byt sice gramaticky spravne, ale nie vzdy aj semanticky korektné.
7 dovodu nédhodnej povahy generovania textu moze dojst k Sireniu nespravnych alebo
zavadzajucich informécii. Rovnako je nutné dbat na kvalitu a zloZenie trénovacich dat,
ktoré mozu obsahovat chyby. Z tychto dévodov je potrebné doplnit vyuzitie LLM o

kontrolné mechanizmy [7].

3.2 Podpora porozumenia softvérovych modelov po-
mocou LLM

Porozumenie softvérovych modelov, teda UML diagramov, patri medzi kIucové vyzvy
v softvérovom inzinierstve. Pre novych ¢lenov vyvojového timu byva casto nérocéné
zorientovat sa v komplexnej architekture existujucich systémov. Prave v tomto smere
mozu velké jazykové modely vyrazne pomoct.

Podla studie [2], ktorda hodnotila schopnost LLM asistovat pri modelovani a po-
chopeni softvérovych artefaktov, moézu tieto modely slazit ako interaktivni asistenti,

ktori st schopni:
e vysvetlovat ¢asti UML modelu v Tudskej reci [2],
e odpovedat na otazky ohladom $truktiry a spravania systému [1, 2],

e generovat alebo doplitat ¢asti modelu na zéklade textovych poziadaviek alebo

existujucich diagramov |1, 2],

e transformovat medzi roznymi reprezentaciami ako je napriklad 'udské re¢ a UML

diagramy [1, 2.

3.3 Vyznam na&vrhu promptov pri vyuzivani LLM

Ucinnost velkych jazykovych modelov do velkej miery zavisi od kvality vstupov, ktoré
im pouzivatel poskytne. Tento proces je velmi dblezity pri vyuzivani generativnej ume-
lej inteligencie v oblasti softvérového inzinierstva [4].

Spravne navrhnuty prompt — teda textova poziadavka alebo otazka zadana modelu
— ma zasadny vplyv na kvalitu, presnost a relevantnost vystupu. V kontexte podpory

porozumenia softvéru to znamena, ze:

e prompt musi jednoznacne Specifikovat, aku ¢ast kodu alebo modelu chceme vy-

svetlit,

3.4. GENEROVANIE DOKUMENTACIE KU KODU POMOCOU LLM 9

e poziadavka by mala byt formulovana ¢o najkonkrétnejsie, aby sa minimalizovala

generalizacia vysledku,

e je mozné vyuzivat few-shot priklady — ukazky oc¢akavaného vystupu, ktoré modelu

naznac¢uju formu alebo strukttru odpovede [4].

Prompt engineering nie je len technika, ale aj forma dizajnu komunikacie medzi
¢lovekom a umelou inteligenciou [4]. V pripade vysvetlovania zdrojového koédu alebo
generovania UML diagramov zo Specifikacie je kvalitny prompt nevyhnutny na to, aby
model porozumel kontextu a poziadavke vyvojara.

Pre potreby nastrojov zameranych na podporu novych vyvojarov v time tak na-
vrh vhodnych promptov predstavuje doélezita sucast celého systému. Automatizécia
niektorych ¢asti promptov modze zefektivnit interakciu a zvysit presnost vystupov ge-

nerovanych LLM.

3.4 Generovanie dokumentacie ku kbdu pomocou LLM

Jednou z vyznamnych aplikacii velkych jazykovych modelov v softvérovom inZinier-
stve je generovanie dokumentécie ku kodu. Tento proces mdze vyrazne zefektivnit on-
boarding novych vyvojarov, znizit zataz skusenych kolegov a zlepsit udrziavatelnost
softvéru.

Stidia Guelmana a kol. [3] ukazuje, ze LLM st schopné generovat dokumentaciu
ku kodu s kvalitou porovnatelnou s I'udskou, najmé v pripadoch, ked je kod dobre

strukturovany. Autori realizovali rozsiahlu analyzu a zistili, ze:

e modely ako ChatGPT dosahuju vysokt presnost pri popise tcelu funkcii a pre-

mennych,

e generované komentare byvaju ¢asto detailnejsie ako tie, ktoré pisu vyvojari ma-

nuélne,

e vyvojari hodnotili vystupy modelov ako uzitoéné a niekedy dokonca preferovali

automaticky generovanu dokumentéaciu pred I'udskou.

Zaroven vsak Studia upozoriuje na limity: v pripadoch, kde je kod zlozitejsi alebo
neobsahuje dostato¢ne vyreéné pomenovania, kvalita generovanych komentarov klesa.
Dolezitou stucastou celého procesu je preto schopnost modelu rozpoznat kontext a po-

menovania symbolov. |3]

10 KAPITOLA 3. VYCHODISKA PRACE

3.5 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) je moderny pristup, ktory rozsiruje moznosti
LLM tym, Ze im pri generovani odpovedi ,dohladava* dodatocné informacie z externych
zdrojov. Klasické LLM pracuji len s datami, na ktorych boli vytrénované, ¢o znamena,
ze nemusia vediet poskytnit tplne aktualne informécie alebo presné odborné detaily
mimo svojho trénovacieho datasetu. RAG tento problém riesi tak, ze eSte pred samot-
nym generovanim doplni model o kontext ziskany z vyhladavacieho mechanizmu. Tym
znizuje chybovost odpovedi a zlepsuje ich presnost [5].

Zakladny princip RAG je zalozeny na dvoch krokoch: retrieval (vyhladavanie) a ge-
neration (generovanie). Najskor sa pouzivatel'ska query prevedie do vektorového pries-
toru pomocou embeddingov. Takto reprezentované query sa porovna s obsahom ulo-
zenym vo vektorovej databaze. Ta moze obsahovat dokumenty, technické Specifikicie,
interné materialy alebo iné textové zdroje. Systém vyberie najrelevantnejsie dokumenty
a vlozi ich ako dodato¢ény kontext do promptu. Ten je néasledne odoslany jazykovému
modelu. Model potom negeneruje odpoved len z vlastnej ,paméte”, ale aj na zéklade
prave nac¢itanych informacii [5].

Vyznamnou vyhodou RAG je, Ze umoznuje pracovat s novymi a Specifickymi tdajmi
bez potreby model opéatovne trénovat. Sta¢i zmenit alebo doplnit vstupnt databazu a
kvalita aj obsah vystupov sa tomu okamZite prispdsobia. Systém je teda velmi flexi-
bilny a vhodny najmé v prostrediach, kde sa informacie rychlo menia — napriklad pri
technickej dokumentacii, pravnych textoch, zakaznickej podpore, podnikovych datach
alebo vedeckych publikaciach [5].

RAG zéaroven poméha znizovat riziko tzv. halucinécii, pretoze generovany text sa
opiera o realne a overitelné zdroje. PouZivatel navySe moze zistit, z ktorych dokumen-
tov model Cerpal, ¢o zvySuje transparentnost aj doveryhodnost celého systému. Tento
pristup je do istej miery podobny akademickému citovaniu, kde mozno kazdé tvrdenie
spétne overit v povodnom zdroji [5].

V sirSom kontexte vyvoja umelej inteligencie predstavuje RAG dolezity posun v
tom, ako sii generativne modely prepojené s externym svetom. Model uz nie je iba
staticky generator textu na zaklade historickych dat, ale stdva sa dynamickym, kon-
textovo citlivym systémom. Vdaka tomu dokaZze poskytovat presné, odborné a zaroven

aktuélne informécie v takmer realnom case [5].

3.6 LangChain a LangGraph

V tejto préaci pouzivame dve tizko pribuzné technolégie z ekosystému vyvoja aplikacii
nad velkymi jazykovymi modelmi — LangChain a LangGraph. Ich kombinacia ndm

umoziuje navrhovat a implementovat komplexné, viacagentové systémy, ktoré je mozné

3.6. LANGCHAIN A LANGGRAPH 11

relativne jednoducho rozsirovat. Kedze jadrom nasho rieSenia je orchestracia viacerych
agentov, prirodzene sa pontka vyuzitie oboch néstrojov.

LangChain predstavuje vSeobecny framework na budovanie aplikacii nad LLM. Po-
skytuje sadu znovupouzitelnych komponentov (retazce, nastroje, paméit, retrievery,
integracie na modely a vektorové databéazy) a umoziuje ich skladat do sekvenénych
alebo mierne vetvenych workflowov. [6] V praxi to znamen4, Ze vyvojar namiesto pria-
meho volania modelu riesi vyssiu troven logiky, napriklad ,,vezmi vstup, dopli kontext
z dokumentov, zavolaj model, nasledne odpoved uprac a zaloguj“. Takyto pristup vy-
razne skracuje ¢as potrebny na prototypovanie a zaroven podporuje znovupouzitelnost
Cast{ rieSenia.

LangGraph naopak stavia na zakladoch LangChainu a rozsiruje ich o vyslovne gra-
fovy model riadenia. Jednotlivé kroky workflowu st reprezentované ako uzly (nodes)
a prechody medzi nimi ako hrany (edges). Namiesto linearneho retazenia krokov tak
vznika orientovany graf, v ktorom je mozné modelovat vetvenie, slucky, opakované roz-
hodovanie a zdielany stav medzi agentmi. [6] V kontexte tejto prace je to kltucové
najma pre viacagentovy scenar, v ktorom nad jednym repozitarom kdédu postupne pra-
cuje ,generator textu“ a ,reviewer.

Porovnanie tychto pristupov ukazuje, ze LangChain sa typicky odporuca pre jedno-
duchsie, prevazne linearne alebo len mierne vetvené workflowy. Tam staci rychlo poskla-
dat sekvenciu volani modelu a pomocnych néstrojov. LangGraph je naopak vhodnejsi
pre robustnejSie prostredia, kde je potrebné udrziavat stav medzi krokmi, koordino-
vat viacerych agentov a umoznit im opakovane sa rozhodovat na zaklade priebeznych
vysledkov. To ndm pomaéaha k tomu, aby nastroj vediel iterativne analyzovat zdrojovy
kod, rozhodovat o dalsich krokoch (napr. ¢i zapojit kontrolného agenta) a v pripade
potreby sa vratit k predchadzajucim fazam spracovania. 6]

Napokon je vhodné zdoéraznit, ze LangChain a LangGraph nevystupuji izolovane,
ale st stucastou Sirsieho ekosystému néastrojov pre budovanie agentovych LLM aplikacii.
Casto sa pouzivaji spolu so sprievodnymi néastrojmi, ako st LangSmith a LangFlow.
Vznika tak technologické prostredie, ktoré umoznuje nielen implementaciu samotného
néstroja, ale aj jeho testovanie, ladenie a potencidlne nasadenie v produkénom pro-
stredi. [6]

12

KAPITOLA 3. VYCHODISKA PRACE

Kapitola 4

Vyskum

4.1 Popis vyvinutého nastroja

Nas softvér je urceny na automatizovani analyzu, dokumentovanie a vizualizaciu zdro-
jového kodu Python projektov. Navrh vychadza z dvoch kIacovych pripadov pouZitia,
ktoré odrazaju rozdielne potreby a ocakévania uZivatelov pri praci so zdrojovym ko-

dom:

e Newcomer (zaciato¢nik vo firme) — pouzivatel, ktory sa prvykrat stretava
s existujucim kédom a potrebuje rychlo pochopit architektiru projektu, tcel
jednotlivych modulov a vyznam najdolezitejsich funkcii. Pre takéhoto uzivatela
nastroj poskytuje ucelend technickt dokumentéaciu, vizudlne UML diagramy, su-

marizaciu tried a funkcii, a taktiez prirucky ku softvéru.

e Senior programator — skiseny vyvojar, ktory vyzaduje efektivne nastroje na
reverzné inzinierstvo, vyhladavanie kritickych ¢asti systému, ¢i analyzu architek-
tary a zéavislosti. Pre tuto skupinu poskytuje systém metriky z AST analyzy, iden-
tifikdciu najdolezitejsich funkcii na zéklade vlastného indexu dolezitosti, detailné
UML diagramy celého systému a néstroje umoznujtce orientaciu v rozsiahlych
projektovych struktirach. Takisto skiisenému vyvojarovi systém poskytne rychle

spravenie dokumentécie pre zékaznika.

Vdaka tymto dvom perspektivam je nastroj flexibilny a univerzalny: novych ¢lenov
timu rychlo uvedie do problematiky, zatial ¢o skisenym vyvojarom poskytne podklady

pre technické rozhodovanie a hlbsiu analyzu projektu.

4.1.1 Hlavna charakteristika

Néstroj predstavuje modularny systém, v ktorom jednotlivé komponenty (dalej agenti)

vykonavaji samostatné kroky spracovania zdrojového kodu. Kazdy agent je zodpo-

13

14 KAPITOLA 4. VYSKUM

vedny za konkrétnu ulohu od analyzy a extrakcie Struktury programu cez generovanie
technickej dokumentécie az po tvorbu UML diagramov pomocou LLM.

Hlavnou myslienkou vyvoja bola potreba automatizovat a zjednodusit proces ana-
lyzy existujuceho kddu, ako aj poskytnit konzistentné vystupy vhodné pre technickua

dokumentaciu a prezentaciu architektiry systémov.

4.1.2 Ziskavanie zdrojového kédu

Prvym krokom spracovania je automatizované stiahnutie repozitara zo sluzby GitHub.

O tuto cast systému sa stard modul RepositoryReader, ktory zabezpecuje:

e korektné klonovanie repozitara pomocou kniznice GitPython,
e vytvorenie docasnej pracovnej kopie v lokalnom adreséari,
e vyhladanie vSetkych stiborov typu .py,

e nacitanie ich obsahu do pamétovej struktury pre dalsie spracovanie.

Tymto sposobom je mozné analyzovat aj vacsie projekty bez toho, aby bolo nutné

zadefinovat presni Strukturu adresarov alebo manualne prechadzat jednotlivé subory.

4.1.3 Statickd analyza kédu

Po ziskani zdrojovych stborov nasleduje faza statickej analyzy zaloZzenej na abstrakt-

nom syntaktickom strome (AST). Analyza zahfha:

e extrakciu definicii funkcii a tried,

e identifikdciu atribiitov a metdéd v ramci tried,

e analyzu importov a zavislosti medzi modulmi,

e ziskavanie metrickych tudajov, ako st pocet riadkov, cyklomaticka zlozitost ¢i

pocet volani.

4.1.4 LLM agenty pre dokumentaciu a vizualizaciu

Klacovym prvkom naseho softvéru je integracia velkého jazykového modelu prostred-

nictvom platformy Ollama a kniznice LangChain/Langgraph. Vysledkom je :

e generovat technicki dokumentaciu pre jednotlivé sibory,

e sumarizovat funkcionalitu tried a modulov,

4.2. FUNKCIONALNE POZIADAVKY 15

e vytvarat inStalacné prirucky s detailnym navodom na pouzitie,

e tvorit UML diagramy (komponentovy diagram a diagram tried) na zéklade ana-

lyzy zdrojového kodu.

LLM agenti nepracuja izolovane — mnohé vystupy st vzajomne prepojené. Napri-
klad class diagram pre cely systém je kombinéaciou deterministickej analyzy (identifi-
kicia atributov a metod v AST) a generativnej analyzy (odvodzovanie vztahov medzi

triedami prostrednictvom LLM).

4.1.5 Hlavna riadiaca logika

Cely proces orchestruje skript main.py, ktory poskytuje pouzivatelovi interaktivne

menu. Na zéklade vyberu pouZivatela je spustend prislusné tloha:

e generovanie dokumentéacie k zdrojovym stiborom,

zobrazenie desiatich najdolezitejsich funkcii podl'a vlastného indexu dolezitosti,

e vytvorenie komponentového UML diagramu,

vytvorenie diagramu tried pre cely projekt,

generovanie komplexnej instalac¢nej prirucky.

Takyto pristup umoznuje flexibilné rozsirovanie funkcionality o dalsich agentov a

spracovatel'ské kroky bez zasahu do existujiceho API.

4.2 Funkcionalne poziadavky

Funkcionalne poziadavky znamenaju ocakavané spravanie systému , ktoré st nevy-
hnutné pre automatizovani analyzu, dokumentaciu a vizualizaciu Python projektov.
Poziadavky st formulované s ohladom na dve hlavné skupiny pouzivatelov: novych
¢lenov projektov, ktori potrebuji rychlo porozumiet existujicemu kédu, a seniornych
programatorov, ktori oc¢akavaji podrobni technickt analyzu a podporu pri préaci so

zlozitejSimi architektdrami.

4.2.1 Poziadavky na pracu s repozitarom

Systém musi umoznit nacitanie verejného zo stranky GitHub. Pouzivatel zadé iba URL

a nastroj vykona:

e automatické stiahnutie repozitara do doc¢asného adresara,

16 KAPITOLA 4. VYSKUM

e identifikdciu vSetkych stiborov typu .py,
e nacitanie ich obsahu pre dalsie spracovanie,

e bezpecné odstranenie docasného adresara po ukonceni analyzy.

Tieto funkcie umoznuju pouZivatelovi pracovat s projektmi bez predchadzajuce;

lokalnej pripravy a zarucujua konzistentny proces analyzy.

4.2.2 Poziadavky na staticki analyzu zdrojového kédu

Po nacitani projektu musi systém vykonat staticki analyzu pomocou abstraktného

syntaktického stromu (AST). Systém musi byt schopny:

e identifikovat vsetky triedy a ich atribity,
e identifikovat metody a funkcie definované v siiboroch,
e extrahovat importy a vztahy medzi modulmi,

e ziskavat rozne metrické udaje, ako pocet riadkov kodu, pocet volani funkcii alebo

cyklomaticku zlozitost.

Tieto udaje tvoria zéklad pre d'alsie formy analyzy a vizualizacie.

4.2.3 Poziadavky na vyhodnocovanie ddlezitosti funkcii

Systém musi vypocitat index doélezitosti pre kazdu funkciu alebo metéodu v projekte.
Tento index musi zohladnovat vysledky statickej analyzy, ¢o umoziuje identifikovat

najkritickejsie casti aplikacie. Systém musi vediet:

e vypocitat dolezitost na zaklade viacerych metrik,
e zoradit funkcie podla vyznamu,

e zobrazit pouzivatelovi najdolezitejsie funkcie v prehladnej podobe.

Tato funkcionalita je dolezita najmé pre seniornych programatorov, ktori potrebuja

rychlo identifikovat kltucové prvky architektiry.

4.2. FUNKCIONALNE POZIADAVKY 17

4.2.4 Poziadavky na generovanie dokumentacie pomocou LLM

Nas systém musi priamo zo zdrojového kdédu generovat technickt dokumentaciu. Ge-

nerovanie sa deje kvoli LLM agentovi. Systém musi:
e vytvorit popisy pre kazdy analyzovany stubor,
e vysvetlit ucel siborov, funkcii a tried,
e vytvarat konzistentni a technicky spravnu dokumentéciu,
e umoznit jej reviziu pomocou sekundérneho kontrolného agenta,

e ulozit vysledky do jedného vystupného dokumentu.

Tento proces poskytuje novym ¢lenom timu rychly prehlad o logike projektu.

4.2.5 Poziadavky na generovanie UML diagramov

Poziadavkou naseho softvéru je umoznovat automaticka vizualizaciu architektiry pro-

jektu pomocou UML diagramov. Musi poskytovat:

e komponentovy diagram zaloZeny na vztahoch medzi modulmi,
e diagram tried pre cely projekt s atribatmi a metédami,
e generovanie vztahov medzi triedami pomocou LLM,

e export diagramov do formatu kompatibilného s PlantUML.

Diagramy si dolezitym nastrojom pri orientacii v architekttre rozsiahlych projek-

tov.

4.2.6 PozZiadavky na generovanie inStalacnej prirucky

Systém musi byt schopny vytvorit kompletni instala¢nt prirucku pre dany projekt.

Prirucka musi obsahovat:

e systémové poziadavky,

postup klonovania repozitara,

konfiguraciu virtuélneho prostredia,

instalaciu zavislosti,

konfiguraciu LLM modelov (ak st potrebné),

18 KAPITOLA 4. VYSKUM
e navod na spustenie,
e rieSenie najcastejsich problémov.

Tento vystup sluzi ako rychly manudl pre novych pouZzivatelov projektu.

4.3 Navrh rieSenia a architektara

Na zaklade definovanych cielov a poziadaviek som nas systém navrhol ako modularnu
aplikaciu. Kazdy modul mé jasne definované zodpovednosti a je dostato¢ne oddeleny

od ostatnych modulov. Architektira tohoto systému je znazornena v obrazku 4.1.

Architecture Overview - Repo Documentation & Diagram Generator

Obr. 4.1: Architektonicky diagram systému

4.4 Pouzité technologie

Tato kapitola opisuje technologicky zaklad vyvinutého nastroja. Nasledujtci zoznam

sumarizuje v8etky hlavné technologie pouzité pri vyvoji nasho softvéru:

e Python 3 — primérny programovaci jazyk projektu.

GitPython — kniznica na automatizovani pracu s Git repozitarmi.

AST (Abstract Syntax Tree) modul — nastroj na staticka analyzu Python kodu.

LangChain — framework pre orchestraciu LLM agentov.

Ollama — lokalna platforma pre spustanie velkych jazykovych modelov.

Llama 3.2 (resp. iné LLM modely) — jazykovy model pouZzivany na generovanie

dokumentacie a UML diagramov.

4.4. POUZITE TECHNOLOGIE 19
e PlantUML — standardny format pre textova definiciu UML diagramov.
e Markdown — forméat pre vystupné dokumenty (napr. instalacna prirucka).

e GitHub — zdroj projektovych repozitarov.

V nasledujicej ¢asti st jednotlivé technologie popisané detailnejsie, avsak bez for-
malneho ¢lenenia na podsekcie, aby bol text plynulejsi a vhodny do narativnej casti

prace.

Python 3 tvori zédklad celého projektu a predstavuje hlavny programovaci jazyk
nastroja. Vyuziva sa na pracu s datovymi Struktiirami, spracovanie textu a zdrojovych
stiborov, statickt analyzu prostrednictvom modulu AST, implementaciu jednotlivych
agentov aj komunikaciu s jazykovymi modelmi. Python sme zvolili pre svoju flexibilitu
a aaj pre velky vyber kniznic. Tak isto pre integraciu ollama sme potrebovali zvolit
python.

GitPython je kniZnica umoziujica komunikiciu s Git repozitarmi priamo z pro-
stredia Pythonu. V projekte zabezpecuje klonovanie vstupnych repozitarov na zaklade
URL, pracu s do¢asnymi adresarmi a oSetrenie chyb pri klonovani napriklad neplatna
URL, neexistujuci repozitar alebo konfliktny stav cielového prie¢inka. Vdaka tomu
moZe nastroj bez manualneho zasahu pouZivatela nacitat zdrojovy kod I'ubovolného
projektu hostovaného na GitHube ¢i v inom Git serveri.

AST modul (ast) je sucastou standardnej kniznice Pythonu a umoziuje previest
zdrojovy kod do podoby abstraktného syntaktického stromu. Projekt tento modul vy-
uziva na identifikiciu tried, metod a funkcii, extrakciu atributov tried, analyzu impor-
tov a vypocet metrickych udajov, ako je pocet volani funkcii ¢ priblizna cyklomatickéa
zlozitost. Sluzi ako input pre generovanie dokumentacie aj UML diagramov a zaroven
minimalizuje riziko halucinacif .

LangChain predstavuje framework pre orchestraciu velkych jazykovych modelov
a ich integraciu do komplexnejsich pipeline. V ramci nastroja umoznuje vytvarat tzv.
LLM agentov, ktori kombinuji prompt, konkrétny model a doplnkova logiku. Tymto
spdsobom vznikaji samostatni agenti zodpovedni za tvorbu dokumentécie, za reviziu
(review) vygenerovanych textov, za generovanie UML diagramov & za tvorbu instalac-
nej prirucky. LangChain poskytuje jednotné rozhranie pre pracu s modelmi a ulah¢uje
kompoziciu viacerych krokov spracovania do jedného konzistentného pracovného toku.

Ollama je lokalna platforma, ktora umoznuje spustanie velkych jazykovych mode-
lov priamo na pocita¢i pouzivatela. V nasom néastroji sluzi ako infrastruktirna vrstva
pre beh LLM, takze vSetky dotazy smeruju do lokdlneho runtime prostredia namiesto
do cloudovych sluzieb. To umoziuje spracovanie zdrojového kdédu bez jeho odosielania

na externé servery. Tymto sa posiliuje bezpecnost a silad s internymi bezpecnost-

20 KAPITOLA 4. VYSKUM

nymi politikami. Zaroven to znizuje prevadzkové naklady pri opakovanom pouzivani
nastroja.

Model Llama 3.2 sluzi ako primarny jazykovy model. V projekte je nasadeny
na generovanie technickej dokumentacie zdrojového koédu, sumarizaciu architekttry
modulov, navrh PlantUML diagramov tried a komponentov a tvorbu instala¢nych pri-
ruciek. Tento model bol zvoleny pre dobry pomer medzi kvalitou vystupom, vykonom
a moznostou lokalneho spustania cez Ollamu.

PlantUML je textovy format a néstroj urc¢eny na tvorbu UML diagramov pomocou
jednoduchého textového zapisu. V nastroji sa vyuziva na generovanie komponentovych
diagramov na zaklade importnych vztahov medzi modulmi a diagramov tried, ktoré
vznikaju kombinaciou AST analyzy a LLM interpretacie. Textova povaha PlantUML
umoziuje jednoduché verzovanie diagramov v Gite, ich integraciu do dokumentacie a
automatizovani aktualizaciu pri opakovanej analyze projektu.

Markdown je znackovaci jazyk, ktory sa v projekte pouziva najmé na generovanie
instala¢nych priruciek a d'alsich textovych vystupov. Jeho vyhodou je dobra ¢itatelnost
v surovej textovej podobe, Sirokid podpora na platforme GitHub a moznost jednodu-
chého exportu do HTML ¢i PDF. Vygenerovanad dokumentacia tak moze byt priamo
vloZen4 do repozitara ako README alebo doplnkovy dokument bez potreby dalsieho
spracovania.

GitHub plni v nastroji ulohu zékladného zdroja analyzovanych projektov. Git-
Hub tak predstavuje prirodzené prostredie pre ziskavanie vstupného kodu modernych

softvérovych projektov, na ktorych je demonstrovana funkcionalita nastroja.

4.5 Generovanie klasickej dokumentacie

Jednou z najdolezitejsich funkcionalit nasho nastroja je schopnost automaticky genero-
vat dokumentaciu zdrojového kodu. Tato dokumentécia na presné a technicky korektné
zhrnutie architektury. Cely proces je realizovany kombinéciou statickej analyzy kodu a
kooperaciou dvoch nezavislych LLM agentov: dokumentaéného agenta a reviewer

agenta.

4.5.1 Statickd analyza ako vstup pre dokumentaciu

Pred samotnym generovanim dokumentacie prebieha statickd analyza zdrojového kodu.
Jej cielom je poskytnut LLM modelu Strukturované a presné informécie o obsahu

stiborov. Pre kazdy Python stbor sa identifikuja:

e nazvy a umiestnenie funkcii a tried,

e atribity a metody tried,

4.5. GENEROVANIE KLASICKEJ DOKUMENTACIE 21
e importované moduly,
e zakladna Struktura suboru a jeho zodpovednost.
Vystup statickej analyzy vyrazne znizuje pravdepodobnost nespravnych interpreta-

cif zo strany modelu a zaroven zarucuje konzistentnost vygenerovanych textov.

4.5.2 Dokumentac¢ny agent

Dokumentac¢ny agent predstavuje primarny LLM modul zodpovedny za vytvorenie

prvej verzie technickej dokumentécie. Tento agent dostava ako vstup:

e obsah zdrojového siboru,
e vysledky AST analyzy,

e doplnkové metadata (cesta siboru, modulova struktura, ap.).

Jeho tlohou je:

vysvetlit ucel suboru a jeho komponentov,

popisat triedy a funkcie v kontexte celého systému,

zhrnut doélezité mechanizmy fungovania modulu,

generovat konzistentny a technicky text vhodny do dokumentacie.

Agent pracuje deterministicky, s dorazom na technicka presnost a Strukturovany

vystup.

4.5.3 Reviewer agent

Po vytvoreni povodnej verzie dokumentacie prechadza vystup dalsim stupiiom — kon-
trolou pomocou reviewer agenta. Tento agent mé charakter nezavislého hodnotitela,

ktory vykonéva:

e kontrolu technickej presnosti,

hl'adanie nekonzistencii medzi kédom a dokumentéciou,

navrhy na doplnenie nepopisanych casti,

kontrolu spravnosti terminologie,

e zlepSovanie ¢itatelnosti a odbornosti textu.

22 KAPITOLA 4. VYSKUM

review_node(state:

Ot ma
LLON , ¥

[str, Any] = {

: review text,
decision,

: feedback,

return updates

Obr. 4.2: Koéd pre dalsie zapojenie DocMaker agenta

Po spracovani udajov sa rozhoduje v systéme ako je demonstrované v kode 4.2.

Reviewer agent dostava ako vstup:

e povodnu dokumentéaciu od hlavného agenta,
e plny obsah zdrojového siboru,

e vysledky statickej analyzy.

Tymto spésobom kontrolna faza nie je zalozena na heuristickom porovnévani textu,
ale na hlbokom porozumeni samotnému kédu. Vysledkom je ovela kvalitnejsia doku-

mentécia, ktora odstranuje nepresnosti alebo prilis vseobecné formulacie.

4.5.4 Pipeline generovania dokumentéacie

Cely proces generovania dokumentacie prebieha v nasledovnych krokoch:

4.5. GENEROVANIE KLASICKEJ DOKUMENTACIE 23

1. Pouzivatel zvoli moznost ,Generovat dokumentéciu‘.

2. Systém automaticky naklonuje cielovy GitHub repozitér.

3. Statickd analyza pomocou AST identifikuje struktaru kodu.
4. Dokumentaény agent vytvori prvy navrh dokumentéacie.

5. Reviewer agent skontroluje a pripadne upravi text.

6. Vysledny dokument sa ulozi ako jeden suhrnny vystup.
Proces podporuje tvorbu dokumentacie pre:
e vsetky suibory v projekte,

e jediny stubor podla vyberu pouzivatela.

4.5.5 Vyhody zapojenia dvoch agentov

Pouzitie dvojice kooperujucich agentov prinasa vyznamné vyhody:
e Vyssia presnost — kazdy text je automaticky skontrolovany.
e Eliminacia halucinacii — reviewer porovnava dokumentéciu s realnym kédom.
e Kvalitnejsi text — text prechadza dvoma fdzami spracovania.

e Lepsia konzistentnost — systém udrZiava rovnaky tén a Strukttru napriec¢ pro-

jektom.

4.5.6 Zhrnutie

Vyslednti podobu generovanej dokumentacie ilustruje obrazok 4.3. Na ukazke je zo-
brazeny vystup pre jeden z analyzovanych modulov, kde nastroj automaticky vytvoril

suvisly technicky text. Dokumentacia obsahuje:

e stru¢ny uvodny popis modulu a jeho zodpovednosti v rdmci systému,
e prehlad hlavnych tried a funkcii vratane ich ucelu,

e vysvetlenie vizieb na iné casti projektu (napriklad na pomocné utility alebo LLM

agenta),

e zhrnutie typickych scendrov pouzitia danej casti kodu.

24 KAPITOLA 4. VYSKUM

m
ngle file)
enabled)

i## File: main.py

File: main.py

#HH# Class: Weatherfpp
application with features to display current weather, forecast, and lo

y forecast displa
and time display.
ight information.

s the temperature display.
el logging system.

iHH Met

#H creat
Parametel

Description: €

Obr. 4.3: Ukazka vyslednej generovanej dokumentécie pre vybrany modul projektu.

Kapitola 5

Vysledky a diskusia

25

26

KAPITOLA 5. VYSLEDKY A DISKUSIA

Zaver

27

28

Zaver

Literatara

[1] F. J. Alcaide, J. R. Romero, and A. Ramirez. Can explainable artificial intelli-
gence support software modelers in model comprehension? Software and Systems
Modeling, 2025.

[2] J. Camara, J. Troya, L. Burgueno, et al. On the assessment of generative ai in
modeling tasks: an experience report with chatgpt and uml. Software and Systems
Modeling, 22:781-793, 2023.

[3] Ian Guelman, Arthur Gregorio Leal, Laerte Xavier, and Marco Tulio Valente. Using
large language models to document code: A first quantitative and qualitative as-

sessment, 2024.
[4] IBM. What is prompt engineering?, 2025. Accessed: 2025-05-12.

[5] Rick Merritt. What is retrieval-augmented generation, aka rag?, 2025. Accessed:
YYYY-MM-DD.

[6] Ryan Ong. Langchain vs langgraph vs langsmith vs langflow: Key differences ex-
plained, September 2025. Accessed: 2025-12-11.

[7] Ipek Ozkaya. Application of large language models to software engineering tasks:
Opportunities, risks, and implications. IEEE Software, 40(3):4-8, 2023.

29

30

LITERATURA

Priloha A:

31

	Úvod
	Motivácia
	Ciele práce
	Východiská práce
	Využitie veľkých jazykových modelov (LLM) pri podpore pochopenia softvéru
	Podpora porozumenia softvérových modelov pomocou LLM
	Význam návrhu promptov pri využívaní LLM
	Generovanie dokumentácie ku kódu pomocou LLM
	Retrieval-Augmented Generation (RAG)
	LangChain a LangGraph

	Výskum
	Popis vyvinutého nástroja
	Hlavná charakteristika
	Získavanie zdrojového kódu
	Statická analýza kódu
	LLM agenty pre dokumentáciu a vizualizáciu
	Hlavná riadiaca logika

	Funkcionálne požiadavky
	Požiadavky na prácu s repozitárom
	Požiadavky na statickú analýzu zdrojového kódu
	Požiadavky na vyhodnocovanie dôležitosti funkcií
	Požiadavky na generovanie dokumentácie pomocou LLM
	Požiadavky na generovanie UML diagramov
	Požiadavky na generovanie inštalačnej príručky

	Návrh riešenia a architektúra
	Použité technológie
	Generovanie klasickej dokumentácie
	Statická analýza ako vstup pre dokumentáciu
	Dokumentačný agent
	Reviewer agent
	Pipeline generovania dokumentácie
	Výhody zapojenia dvoch agentov
	Zhrnutie

	Výsledky a diskusia
	Záver
	Príloha A

