
VR-Based User Interactions to Exploit Infinite
Space in Programming Activities

Vı́ctor Stefano Segura Castillo ∗, Leonel Merino †, Geoffrey Hecht ∗, Alexandre Bergel ∗
∗ISCLab, Department of Computer Science (DCC), University of Chile, Chile

†DILab, School of Design and School of Engineering, Pontifical Catholic University of Chile

Abstract—Virtual reality (VR) devices have now become a
commodity, and as such, VR is percolating the traditional work-
ing environment of software programmers. Current approaches
to use VR as the medium to immerse software programmers
essentially project classical IDE windows in the virtual environ-
ment: the very same VSCode or IntelliJ window is seen through
the VR device. As a consequence, the same constraints imposed
by a physical screen are found in the VR environment, thus
representing a missed opportunity.

VRIDE is a new VR-based environment for object-oriented
programming to let software developers carry out their activities
in a full VR-based immersed environment. VRIDE innovates by
offering interactions based on Code Cubes that are designed
to exploit the infinite space in the VR environment. Through
code cube interactions our approach disrupts the traditional
mapping of windows from desktop to VR by supporting dedicated
actions for navigation, inspection, and space management. Our
prototype illustrates the feasibility of having a full-immersive
virtual environment for software programmers.

I. INTRODUCTION

The field of Virtual Reality (VR) has recently seen numer-
ous significant progresses, including the emergence of sophis-
ticated controllers, broad range of VR-based applications, and
innovative application domains.

A number of attempts have been made to incorporate
VR devices within the working environment of software
programmers [1]. However, the common approach to let a
programmer develop application in a VR environment is to
just map mainstream classical, non-VR, IDEs into the VR
World. Consider Immersed1, one of the most popular VR
environments for programmers. Immersed maps traditional
windows, as seen in a plain standard physical computer, into
windows projected in VR. As a consequence, the working
environment offered to a programmer is still structured in
terms of virtual screens and windows. One of the benefits of
Immersed is to “spawn up to 5 virtual monitors in VR” and
no need to redesign the environment for VR. Whereas the VR
world offers an infinite space to exploit, Immersed constraints
a programmer to structure her programming environment in
terms of windows and screens. We argue that simply projecting
non-VR tools into a virtual reality environment represents
a missed opportunity by forcing users to interact with the
environment the same way than in a non-VR setting.

1https://immersed.com

VRIDE. This paper describes VRIDE, a VR environment for
programmers that offers unique interactions to exploit the
infinite space offered by VR. VRIDE provides a complete
programming environment for the Pharo [2] and Python pro-
gramming languages. Essential programming tools, including
the code browser, inspector, playground, as well as, navigation
operations have been redesigned to benefit from the infinite
space. VRIDE supports the motto “programmers need no
physical screens” by offering the support to program while
being fully immersed. A programmer does not need to remove
the VR headset to carry out part of some programming
activities.

Contribution. This paper proposes the graphical metaphor of
code cube, a technique to represent and interact with software
artifacts (such as source code, windows and tools) in a VR-
environment. A code cube represents a class, which is the
primary software component in class-based object-orientation.
A code cube can be unfolded to inspect and edit a class, and
spawn to reflect navigation actions.

Our paper contributes to the state-of-the-art by (i) identify-
ing an opportunity that has been missed by classical VR-based
environments, and (ii) proposing code cube, a visual metaphor
to let programmers exploit a VR-based infinite space.

Outline. The outline of this paper is as follows: Section II
describes VRIDE and the code cube metaphor; Section III
presents a programming example and how it can be carried out
with VRIDE; Section IV highlights some key aspects of the
implementation of VRIDE; Section V is dedicated to related
works; Section VI concludes and outlines our future work.

II. VRIDE

VRIDE is a VR-based programming environment that sup-
ports object-oriented programming. Two programming lan-
guages are currently supported by VRIDE, namely Pharo and
Python. VRIDE proposes code cube, an innovative visual
technique to carry out programming activity.

A. Code cube

Code cube is a visual metaphor to represent a class, which
is the primarily structural element in object-oriented program-
ming. Figure 1 illustrates a code cube for a particular class,
as seen through the VR device. A class is visually rendered
as a cube, in which each facet represents a particular aspect
of the class. Those aspects could be:978-1-6654-0956-8/21/$31.00 ©2021 IEEE

20
21

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
of

 th
e

C
hi

le
an

 C
om

pu
te

r S
ci

en
ce

 S
oc

ie
ty

 (S
C

C
C

) |
 9

78
-1

-6
65

4-
09

56
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SC
C

C
54

55
2.

20
21

.9
65

03
96

Authorized licensed use limited to: Comenius University. Downloaded on March 06,2024 at 11:22:49 UTC from IEEE Xplore. Restrictions apply.

Figure 1. A folded and unfolded code cube

1) Class definition: a textual description of the class defi-
nition is provided listing the class name, its super class,
and the declared instance variables. The definition can be
customized to express refactorings (e.g., class renaming,
variable renaming), or incremental changes (e.g., adding
a new variable).

2) List of methods: methods defined by the represented class
are listed in an alphabetic order.

3) Method source code: if a method is selected in the
previous facet, then the actual source code of the method
is given in a dedicated facet. A method source code can
be read and modified directly within this facet.

4) Scatterplot: software metrics are visually represented as a
scatterplot to compare the represented class against other
classes in the application. Currently, we consider two
metrics: number of methods and number of lines of code.

5) Incoming dependencies: Code navigation is often ex-
pressed in term of following dependencies between soft-
ware components. This facet lists the components that
directly refers to the class associated to the code cube.

6) Outgoing dependencies: Similarly, classes that are di-
rectly used by the browsed class are listed and accessible
through a dedicated facet.

7) Superclass and subclasses: class hierarchy can be navi-
gated through using a dedicated facet.

8) Log Entry: the output obtained during class definition and
script execution.

As programmers spend much time navigating the com-
ponents of software systems, we designed VRIDE in way
that it facilitates navigation. A code cube supports classical
interactions expected in a 3D environment: a code cube can
be translated and rotated along the three axes. Translating code
cubes is useful to manually cluster related classes. A group of
related classes can be located in a particular place in the virtual
environment.

In VRIDE, grouping classes happens by explicitly locating
code cubes in a particular position in the virtual infinite space.
Rotating a code cube lets one make a particular aspect more
explicit. Oppositely, in a standard tab-based programming
environment such as Eclipse, IntelliJ, and Visual Code, group-
ing related classes happen by manually rearranging tab and
windows. Projecting a particular aspect of a class is achieved
using perspective (using Eclipse) or views (using IntelliJ). Our
approach, based on code cube, enables the same operations,
but carried out in a very different fashion, by operating on
cube located in a VR world.

B. Code cube unfolding

A code code can be unfolded to show all the facets at
the same time. Independently of the rotation angle when
folded, all facets are orthogonally-oriented to the users’ camera
when unfolded. Unfolding a code cube is designed to support
a programming activity focused on a particular class. In a
traditional and non-VR environment, this operation can be best
represented as opening a textual file to read or modify the
content of the class. Figure 1, lower part, gives the example
of an unfolded code cube. Unfolding is animated and provides
a comfortable visual experience by being smooth and fluid.

C. Spawning code cube

Navigating within a software code base is expressed in terms
of code cube spawning, i.e., adding new code cubes in the
virtual environment. Spawning a new code cube lets one to
augment the current working set with a new or existing class.
As such, a code base exploration happens by spawning code
cubes. Some of the facets described previously are dedicated to
exposing the connections with the environment. In particular,
the facets incoming dependencies, outgoing dependencies,
superclass and subclasses lets one to open a new code cube
on an existing or new class. A new cube is created and located
in the virtual environment next to the former class. This new
code cube can be individually rotated and drag-and-dropped.

D. Removing code cube

Narrowing the focus of the working environment is ex-
pressed by reducing the number of code cubes presented in
the virtual environment. Code cubes can be gathered, and
eventually removed using a VR broom, a tool to collect code
cubes. A programmer can use the broom by drag-and-dropping

Authorized licensed use limited to: Comenius University. Downloaded on March 06,2024 at 11:22:49 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Live demonstration of a broom. The image shows a pair of
visualizations attached to the broom

it using a hand controller. The cubes collected by the broom
can be translated, scaled, and removed. The VR Broom is
a handy tool that allows to attach an arbitrary number of
windows and visualizations. The broom operates as a magnetic
whiteboard. The user can stick elements to the broom thanks
to a collider component put in every code cube. Figure 2
illustrates a VR broom in which a class tree, expressed in
terms of connected code cubes, is attached. The broom can
then be manipulated as a transparent board. Each cubes are
located in the same the same plane and they can be resized,
translated, and removed in the same way. The benefit of the
broom is to reduce a significant effort to perform the very same
action on multiple code cubes. Once cubes are collected, only
one action can be applied to all the cubes.

E. Playground Cube
A playground is a tool in which a user can execute scripts

in it. Those scripts typically execute arbitrary statements or
simply invokes the entry point of a larger application. A
playground cube is a particular cube that support editing
and executing scripts. A playground cube can be folded and
unfolded to let one define a particular script on a facet, as
shown in Figure 3.

Figure 3. Screenshot of both a browser cube (left side) and a playground
cube (righ side). Both cubes are currently unfolded.

III. USAGE EXAMPLE

In a nutshell. Meet Victor, a software engineer. He wants to
adopt VRIDE as his programming environment. To this end,

Victor decides to define a library that can contain various kinds
of items, with the possibility of making queries. This can be
done using design patterns, such as visitors, and by defining a
class hierarchy. Victor adopts a workflow, shown in Figure 4,
as follows:
Step 1. He opens a new code cube to navigate through pack-
ages, classes, and methods. This kind of code cube provides
all the tools from a Pharo System Browser, while showing
other information. The cube is closed at the beginning for a
better usage of 3D space.
Step 2. Victor opens the cube by pressing a couple of buttons
from the controller. The facets are displayed in the same plane,
so he can define a class, its methods and its variables by
writing code inside the source code facet. Once he is done,
all previous elements will be available inside the method list
facet and class list facet.
Step 3. Victor wants to check for dependencies and hierarchy.
Therefore, will open a new code cube from the browser,
displaying all info related to that class. The cube will dis-
play the following information: 1) source code, 2) incoming
dependencies, 3) outgoing dependencies, 4) a scatter plot of
the number of lines of code vs. number of methods, 5) parent
class, and 6) children classes.
Step 4. Then, Victor opens a Halo menu, which allows
programmers to navigate through classes that are part of the
dependencies and hierarchy. All selected elements will appear
as new code cubes, and they will have a connecting line to
their related classes.
Step 5. Victor navigates through the newly generated cubes,
by hovering the cubes with the pointer or grabbing the cube
with his hands.
Step 6. After inspecting and navigating through all the classes,
Victor wants to close all of the code cubes at once. As shown in
Figure 2 and Figure 6, a new broom is opened, so all elements
can be dragged and deleted at the same time.

Figure 5 shows the usage of 3D space by the user and the
cubes. We can see that space usage is almost 24 m3 and points
tend to concentrate where cubes and the user are working
together. This demonstrates how an approach like VRIDE
encourages the user to exploit the infinite space provided by
VR. In this case, the user used several cubes scattered in
several directions within the 3D space.

IV. IMPLEMENTATION

VRIDE is implemented using Unity and acts as a frond-
end to a Pharo and Python interpreter. VRIDE implements a
whole user interface library to build and interact with code
cubes. Communication with the server is simply performed
using POST request that exchange serialized data between the
Unity front-end and the server. The project is open-source, and
can be found online.2

Full and permanent immersion. VRIDE has been designed
to let practitioners fully develop their application within the

2https://github.com/Vito217/VRIDE

Authorized licensed use limited to: Comenius University. Downloaded on March 06,2024 at 11:22:49 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Example shown from left to right, and from up to down. (1) shows a virtual keyboard and a Browser as a code cube. In (2), the cube is fully open
for better reading. In (3), a new code cube has spawned, representing a new defined class. (4) displays the halo menu working. (5) shows the inspection of
the code cube. Finally, (6) shows the VR Broom, where every cube is attached to it.

the virtual environment. VRIDE offers a set of development
tools that allow one to comfortably develop within the virtual
environment. Users can use the controllers to interact with the
UI elements. They also are given the option to use either a
virtual keyboard or a physical keyboard to write code. As such,
developers are able to conduct a programming activity without
removing the VR device. Consequently, we think that VRIDE
can be helpful to address various questions that happen in live
programming [3].

Standalone. Most of VR software works with a device con-
nected to a desktop computer or laptop, While this is still
the case with VRIDE, it is also compatible with standalone
devices, like the Oculus Quest, where there is no need to use
a separate machine. Since VR devices are quite expensive, this
feature reduces that extra cost.

Session. Session is kept by storing a data file associated to
each user. Said file contains distinctive information, such as
last opened tools, and a log file that saves all the interactions
done by the user.

V. RELATED WORK

As mentioned before, projects like Immersed VR tend to
translate desktop views to 3D environments. Another example
is CaffeineJS where a WebXR environment maps a Smalltalk
browser to the three dimensional space using JavaScript.3

Important works have analyzed the use of immersive en-
vironments such as virtual and augmented reality to cope
with multiple software engineering tasks. Merino et al. [4]
created CityVR, a software visualization tool that uses the city
metaphor to represent code as buildings. Each building can be

3https://caffeine.js.org/

seen as a cube representing a specific class, showing stuff like
metrics and source code. A similar approach is presented by
Rüdel et al. [5] and Steinbeck et al. [6], comparing software
navigations using the software called EvoStreets. Sharma et
al. [7] proposed using augmented reality to incorporate real
objects to the workspace. Similar to this, Mehra et al. [8]
added the capability of choose the surrounding environment.
This is also supported by the idea of VR open offices by
Ruvimova et al. [9]. Elliott et al. [10] explores the benefits
of VR programming by using RiftSkecth, which allows to
generate code as a tree. Sharma et al. [11] present Immersive
Project Management, focusing on team development. Co-
working would be also presented by Fereydooni et al. [12],
pointing the importance of remote workspaces in the context of
COVID-19 pandemic. Hori et al. [13] developed CodeHouse,
a VR interaction tools that visualizes source code as if it were
a house, where each module is represented as a room. Other
works with software visualization include Fittkau et al. [14]
who introduce ExplorViz, a hierarchical visualization used in
large software landscapes, which would be later integrated into
VR by Zirkel et al. [15].

VRIDE builds on these previous works. It aims to not
only support software visualization but also other software
engineering tasks. VRIDES offers a self-contained environ-
ment that can help to overcome space limitations through tai-
lored interactions. For instance, immersive software interaction
through cubic representations.

VI. CONCLUSION AND FUTURE WORK

Our paper presents code cube as a way to exploit the virtual
space, without relying on traditional windowing system. In that
way, our approach could be adopted by software programmers

Authorized licensed use limited to: Comenius University. Downloaded on March 06,2024 at 11:22:49 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Graphical representation of the 3D space usage, where each point
represents a position at a certain time. (a) shows the space used by the user,
(b) the space used by the cubes and (c) the space used by the user and the
cubes together. Darker colors mean further in time, while each unit on each
axis are equivalent to 1 meter approximately.

Figure 6. A opened Code Cube, where each facet displays the children classes,
parent class, incoming classes, outgoing classes, methods and variables. Last
face shows a lines of code vs. number of methods plot.

to incorporate virtual reality in their daily development en-
vironment. Our implementation, which is publicly available,
demonstrates the feasibility of a VR-based programming en-
vironment. Moreover, our usage examples indicate that non-
trivial programming tasks can be carried out.

The work presented in this paper is preliminary, and the
following roadmap is foreseen: First, we will conduct a
usability test to check how well users can move around the 3D
space and write some basic code inside VRIDE. Second, we
will assess how code cube affects the performance of software
programmers. Third, we will identify the limitations of VRIDE
in conducting some complex programming tasks, involving
functionality and performance debugging.

REFERENCES

[1] L. Merino and O. Nierstrasz, “The medium of visualization for software
comprehension,” Ph.D. dissertation, Universität Bern, 2018.

[2] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into
Pharo. Square Bracket Associates, 2013. [Online]. Available:
http://books.pharo.org/deep-into-pharo/

[3] J. Kubelka, R. Robbes, and A. Bergel, “Live programming and software
evolution: Questions during a programming change task,” in 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), 2019, pp. 30–41.

[4] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Gameful
software visualization,” in International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 2017, pp. 633–637.

[5] M.-O. Rüdel, J. Ganser, and R. Koschke, “A controlled experiment on
spatial orientation in vr-based software cities,” in Working Conference
on Software Visualization (VISSOFT). IEEE, 2018, pp. 21–31.

[6] M. Steinbeck, R. Koschke, and M. O. Rüdel, “How evostreets are
observed in three-dimensional and virtual reality environments,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2020, pp. 332–343.

[7] V. S. Sharma, R. Mehra, V. Kaulgud, and S. Podder, “An extended reality
approach for creating immersive software project workspaces,” in 2019
IEEE/ACM 12th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). IEEE, 2019, pp. 27–30.

[8] R. Mehra, V. S. Sharma, V. Kaulgud, S. Podder, and A. P. Burden,
“Immersive IDE: Towards leveraging virtual reality for creating an
immersive software development environment,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 177–180.

[9] A. Ruvimova, J. Kim, T. Fritz, M. Hancock, and D. C. Shepherd,
“”transport me away”: Fostering flow in open offices through virtual
reality,” in Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020, pp. 1–14.

[10] A. Elliott, B. Peiris, and C. Parnin, “Virtual reality in software engi-
neering: Affordances, applications, and challenges,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 547–550.

[11] V. S. Sharma, R. Mehra, V. Kaulgud, and S. Podder, “An immersive
future for software engineering: Avenues and approaches,” in Proceed-
ings of the 40th International Conference on Software Engineering: New
Ideas and Emerging Results, 2018, pp. 105–108.

[12] N. Fereydooni and B. N. Walker, “Virtual reality as a remote workspace
platform: Opportunities and challenges,” August 2020. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/virtual-
reality-as-a-remote-workspace-platform-opportunities-and-challenges/

[13] A. Hori, M. Kawakami, and M. Ichii, “Codehouse: Vr code visualization
tool,” in 2019 Working Conference on Software Visualization (VISSOFT),
2019, pp. 83–87.

[14] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical software land-
scape visualization for system comprehension: A controlled experiment,”
in IEEE 3rd Working Conference on Software Visualization (VISSOFT).
IEEE, 2015, pp. 36–45.

[15] C. Zirkelbach, A. Krause, and W. Hasselbring, “Hands-on: experiencing
software architecture in virtual reality,” 2019.

Authorized licensed use limited to: Comenius University. Downloaded on March 06,2024 at 11:22:49 UTC from IEEE Xplore. Restrictions apply.

