
Virtual Reality in Software Engineering:
Affordances, Applications, and Challenges

Anthony Elliott
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

anthony elliott@ncsu.edu

Brian Peiris
Toronto, Ontario, Canada

brian@peiris.io

Chris Parnin
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

chris.parnin@ncsu.edu

Abstract—Software engineers primarily interact with source
code using a keyboard and mouse, and typically view software
on a small number of 2D monitors. This interaction paradigm
does not take advantage of many affordances of natural human
movement and perception. Virtual reality (VR) can use these
affordances more fully than existing developer environments
to enable new creative opportunities and potentially result in
higher productivity, lower learning curves, and increased user
satisfaction. This paper describes the affordances offered by VR;
demonstrates the benefits of VR and software engineering in
prototypes for live coding and code review; and discusses future
work, open questions, and the challenges of VR.

I. INTRODUCTION

Programming environments from the previous decades still
do not address programmer issues despite advances in psychol-
ogy, neuroscience, and social aspects of software development.
As a result, problems still persist. Developers still experience
disorientation when navigating code [9]. Developers still expe-
rience problems comprehending code [13]. These basic issues
also impede other important software engineering activities.
For example, in code review, due to insufficient ability to
navigate and understand the code under review, developers
mostly report issues, such as convention violations, instead of
discussing design flaws or defects [2].

Researchers have explored the cognitive issues underlying
several problems developers experience [17]. One such issue is
spatial memory, a memory system in the parahippocampus that
supports the ability to retain spatial awareness. Ko et al. [11]
observed that developers lost track of relevant code when
the cues they relied on, such as position of scroll bars and
document tabs, were disrupted as a result of their navigation.
Similar disorientation often results from failures to engage a
human’s innate processing of spatial memory.

Affordances are devices that leverage innate cognitive mech-
anisms. Researchers have attempted to improve interfaces that
incorporate the human capacity for attention, cognition, and
memory. For example, one study reduced storage and retrieval
time of web bookmarks as well as reduced retrieval failures
by positioning screenshots of the pages on various piles in a
3D space [18].

Similarly, researchers have incorporated affordances for
spatial memory in programming environments. Code Can-
vas [6] positions code files on a large scrollable, zoomable

Fig. 1. Leap Motion with webcam attached to Rift (left), keyboard inside
VR (right)

plane which preserves stable spatial positions of code. Code
Bubbles [3] allows a developer to quickly position related
fragments of code on an infinitely scrollable screen, which
improves navigation and comprehension of fragments.

Spatial memory is just one such affordance leveraged to
improve programming environments, many other affordances
could be similarily leveraged. Virtual reality (VR) can use
these affordances more fully than existing developer environ-
ments to enable new creative opportunities and potentially
result in higher productivity, lower learning curves, and in-
creased user satisfaction.

This paper describes how VR provides affordances in spatial
cognition; manipulation and motion; and feedback that are
not yet fully utilized in programming environments. We then
describe two VR systems we have prototyped and how VR
can be applied to software engineering. Finally, we provide a
brief discussion of future work, open research questions, and
challenges of using VR in software engineering with existing
technologies.

II. AFFORDANCES IN VIRTUAL REALITY

VR provides affordances in spatial cognition; manipulation
and motion; and feedback.

1) Spatial Cognition: Spatial memory is supported by place
cells, specialized neurons that fire as a person navigates
through a physical space and other contextual cues in the
environment. Head-mounted VR displays allow the user to
update their view by moving their body or rotating their neck,
firing place cells in the process. Additionally, these displays
render a slightly different image for each eye (stereoscopic
rendering) which enables the human eye to more easily sense

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.191

547 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Authorized licensed use limited to: Comenius University. Downloaded on February 28,2024 at 12:01:01 UTC from IEEE Xplore. Restrictions apply.

depth of images on the display. These displays can create a
sense of presence, or ‘being there’ [20]. We expect users’
spatial memory to be more engaged in VR than for 2D
displays, especially when viewing 3D visualizations.

VR can directly mimic the affordances offered by physical
navigation. Based on electrocorticography (eCoG) recordings
on the surface of the brain, place cells could be observed firing
in the same sequence as a person navigated a virtual town and
again when they later recalled the paths through the town [7].

2) Manipulation and Motion: The affordances provided
by manipulation of a physical object can result in improved
perception and retention. For example, the affordances offered
by turning pages of a book result in increased comprehension
and recall as when compared to reading the same text on
computer displays [15]. Additionally, the ability to serendipi-
tously browse and relocate material is improved. Motion in
a physical space, through exertions such as walking, have
important cognitive consequences [16]. Other affordances can
be aided by motion. For example, perception of depth is
enhanced by self-actuated movement in a space [8].

Researchers have explored integrating natural interactions
with existing programming environments [5]. Through input
devices such as the Leap Motion, it is possible to physically in-
teract with virtual objects. Physical movement is also possible
in virtual spaces. Body harnesses1 allow free movement in a
virtual space such as walking, running, jumping and crouching.

3) Feedback: The Gulf of Evaluation, as described by
Norman, arises when there is difficulty assessing the state of
the system [14]. VR allows software engineers to be in envi-
ronments that attempt to eliminate this gulf by eliminating the
delay between programmer action and seeing the result of their
action. Such fast feedback has previously been implemented
in two-dimensional displays [4] but VR extends this ability to
three-dimensional displays.

III. APPLICATIONS

We have built VR prototypes for live coding and code
review which concretely demonstrate the benefits of using the
affordances of VR. We argue that the benefits described in
this section can also be extended to other software engineering
activities.

Both of these systems use a head-mounted display (Oculus
Rift - Development Kit 2) and a Leap Motion Controller for
gesture recognition.

A. Live Coding

RIFTSKETCH2 is a live coding environment built for VR
which allows users to describe a 3D scene using the Three.js
library3.

RIFTSKETCH presents a user with a simple text editor (see
Figure 2), floating in front of them in an otherwise empty
VR world. As the user types code into the editor, the world
around them updates instantly to display the 3D scene dictated

1http://cyberith.com/product/
2http://www.youtube.com/watch?v=SKPYx4CEIlM
3http://threejs.org/

Fig. 2. RIFTSKETCH screenshot. The tree is generated by a recursive
algorithm that the user has typed into the floating editor. The flying, animated
birds represent tweets pulled in from the Twitter API, also generated by code
that the user has entered.

by their code. RIFTSKETCH also allows the user to animate
their scene via a callback function which is executed on every
frame. The user can manipulate the state of the 3D scene in this
looped block of code in order to add behaviour to the objects
in their scene. This animation makes the user truly feel inside
the scene in a way not captured by a 2D screenshot.

To assist in interaction with the keyboard, we allow reality
to shine through by using a web camera mounted on the Rift
and project that image in the system (See Figure I).

1) Feedback: RIFTSKETCH provides a tight feedback loop
between code written and its effect in a virtual environment,
enabling quick experiments with various solutions, algorithms
and calculations. RIFTSKETCH is also very promising as a
learning tool since users can see their mistakes immediately
and correct themselves without an intermediate compile step
that might otherwise act as a hindrance. These benefits are
especially evident in RIFTSKETCH when the code describes
a VR scene. As the authors have previously experienced,
watching the entire virtual world change around you as you
type can be an extremely powerful and engaging experience.

2) Hand Manipulation of Code: Furthermore, RIFTS-
KETCH provides the user with shortcuts and input methods
to quickly edit numbers in the code that they write. Keyboard
shortcuts allow the user to increment or decrement numbers
in the code by factors of 0.1, 10 or 100. Integration with
the Leap Motion Controller provides users with the ability
to manipulate numbers using an up and down hand motion.
This allows users to continuously modify a number using their
hand and instantly see how this affects the scene, enabling
faster feedback than manually typing one number at a time.

3) Usage Example: Consider the following scenario: A
space mission has just landed a probe on the surface of a
comet. After 10 years in flight, the probe lands against all
odds but in a position that is unable to receive sunlight.
Automated telemetry programs cannot find a feasible flight
path. As a programmer, you are tasked with updating the
lander’s software to reposition itself safely on solid ground
and you have 24 hours before its batteries die and the probe
deflects off the comet surface. Thankfully the companion

548548548548548548 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Authorized licensed use limited to: Comenius University. Downloaded on February 28,2024 at 12:01:01 UTC from IEEE Xplore. Restrictions apply.

orbiter has gathered detailed information about the surface
around the landing site and telemetry data shows exactly where
and how the lander is positioned.

You update your simulation with the data and step into
RIFTSKETCH to survey the situation. After assessing the
lander’s options, you iterate on possible solutions, first by
using hand gestures to manipulate a possible path and scale
thrust settings, and then the keyboard to refine the code.
With each solution, you observe the lander’s behavior inside
RIFTSKETCH. You walk around the lander to inspect its
position after each maneuver, leaning in to ensure that its feet
are planted firmly in the regolith, and zooming out to an orbital
view to verify that its new position maintains a line-of-sight
to the orbiter on this lob-sided comet.

Finally, after having run the simulation dozens of times in
RIFTSKETCH, you pass the software on to review.

B. Code Review

IMMERSION represents methods as code fragments similarly
to Code Bubbles [3] and displays groups of fragments as piles
on the floor like BumpTop [1]. Piles can be expanded into
a more detailed ring for an overview and detail visualiza-
tion [19].

1) Spatial Reasoning: The reviewer initially sees the active
fragment in the center of the screen (see Figure 3) with
other relevant fragments distributed around the floor in piles.
Reviewers use spatial cognition to judge the relevance of piles
by how far away the pile is as well as the size of the pile. The
reviewer is able to scan the labels of the piles and number of
fragments in each pile to quickly verify if each pile is indeed
relevant.

IMMERSION divides the floor into sections based on pack-
ages of the system and color codes the sections to indicate
how much that package has been modified by the code under
review. By walking between packages, we expect reviewers
to have better mental models due to the increased usage of
spatial reasoning and thus understand the code better during
the review. Similarly, we expect the increased spatial reasoning
to enable reviewers to more easily recall review details after
the review. This would allow reviewers to provide more useful
feedback in future reviews of the same code base.

2) Gesture Interaction: Reviewers can make a grabbing
motion to select a pile and then can pull their hand up to
transform the pile into a ring of fragments for more detailed
inspection. The reviewer is now able to read the foremost
fragment in the circle and can make horizontal finger swipes
to rotate the circle and read other fragments. The reviewer
can pinch the foremost ring fragment on the top and bottom
and move it to the middle of the screen to become the active
fragment. If the reviewer wants to return to the previous
method, they can move their hand as if clearing off a desk.

We have initially focused on supporting explo-
ration—comments can be added via keyboard input, but
we are investigating alternative ways to mark and flag code.

Fig. 3. IMMERSION screenshot. The reviewer is reviewing code to reposition
the lander on the comet. The reviewer sees the active method, piles of relevant
fragments on the floor, and has expanded one pile into a fragment ring on
the left to read the details of those fragments. A model of the comet and
the lander’s expected flight path is shown in the upper left. The reviewer can
walk between code packages on the floor which are color coded according
to amount of modification for this review. GitHub details are shown in the
upper right.

3) Usage Example: Consider the previous comet scenario
where a programmer has implemented a repositioning flight
path for the lander.

A reviewer puts on a Rift and enters IMMERSION to ensure
this solution will actually work. She notes an edge case
which might cause a collision and suggests gently crashing
the companion orbiter into the probe to avoid a larger col-
lision. The original programmer implements the suggestion
in RIFTSKETCH, ensures the simulation works and celebrates
before submitting the correction to the reviewer. However, the
reviewer sees a section of code light up in IMMERSION. As
she walks over to the section she sees that it is the collision
detection section warning that the system will not allow this
code to execute outside of the simulator. She realizes she can
allow the execution by shutting off the engine just before
impact to override the system. They upload the code and the
lander repositions itself as expected.

IV. DISCUSSION

A. Simulation

VR has opened the door for software engineers to create sys-
tems that increase efficiency and enable previously impossible
experiences. Existing applications include NASA who is using
VR to control a robotic arm resulting in higher efficiency 4.
Educational experience Titans of Space 5 allows students to
experience our solar system in a way that makes them feel
like they are truly right next to the sun.

Future research is needed on how to create tools for the
software engineers creating these VR systems. What problems
do VR software engineers face that have no tool support?

4www.engadget.com/2013/12/23/nasa-jpl-control-robotic-arm-kinect-2/
5www.crunchywood.com

549549549549549549 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Authorized licensed use limited to: Comenius University. Downloaded on February 28,2024 at 12:01:01 UTC from IEEE Xplore. Restrictions apply.

B. Remote Collaboration

Multiple programmers located around the world could join
each other in a VR live coding space to figure out how to land
the comet from the motivating example. They would be able
to provide extra insight and could arrive at the solution faster.

A different set of programmers could then join each other
in a VR code review environment. They are able to see what
each person is thinking based on their annotations of the piles
of information in their section of the system.

C. Open Questions

Degrees of Immersion. Augmented reality devices such
as Google Glass, aim to help the user complete tasks in the
physical world by adding information overlays. Augmented
reality seeks to help the user in the physical world while virtual
reality seeks to completely replace physical reality. Is it more
useful to immerse the user in a completely virtual environment,
or to enhance their physical world?

Input Forms. Gaming console controllers work well for
navigation and limited action support but are surpassed by
keyboards at text entry. However, such devices require users
to interact with both the physical and virtual worlds at the
same time. Gesture recognition removes interaction with the
physical world but can cause physical strain. Voice recognition
could reduce strain but may feel awkward in a shared work
space. What is the best way for the user to provide input to a
VR system?

D. Challenges

1) Separation from the Physical: Putting on a VR headset
means blocking out the rest of the physical world, including
coworkers. Peers may lack the opportunity to ask questions
and physical communication is stifled. Additionally, the VR
headset wearer may have trouble interacting with the physical
world while in VR. A webcam mounted to the headset enables
some interaction with the physical world, as seen in Figure I,
but has a limited field of view.

2) 3D Mapping: Some problems don’t have an inherent
3D representation which makes display in VR a challenge. As
seen in IMMERSION, 2D code can be displayed in VR but the
code itself does not have a third dimension and thus loses the
expressiveness of 3D. This could be an area well suited to 3D
metaphorical programming as suggested by Ko et al. [10].

3) Technology Limitations: The 1080p resolution of the
Oculus Rift Development Kit 2 allows for passable text
reading, but needs improvement for multi-hour sessions. Each
user also needs slightly different configuration which requires
time to set up properly.

V. CONCLUSIONS

Two-dimensional development environments have not been
able to take full advantage of affordances such as spatial
cognition, manipulation, and feedback. This paper describes
a vision of how software engineering can use VR for new
kinds of tools that can take advantage of these affordances.

We described how both live coding and code review could
benefit from VR tools but we envision many other software
engineering activities can benefit from VR as well.

REFERENCES

[1] A. Agarawala and R. Balakrishnan. Keepin’it real: pushing the desktop
metaphor with physics, piles and the pen. In Proc. of the SIGCHI
conference on HFCS, pages 1283–1292. ACM, 2006.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of
modern code review. In Proc. of ICSE, pages 712–721. IEEE Press,
2013.

[3] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code bubbles: Rethinking
the user interface paradigm of integrated development environments. In
Proc. of the 32nd ACM/IEEE ICSE - Volume 1, ICSE ’10, pages 455–
464, New York, NY, USA, 2010. ACM.

[4] M. M. Burnett, J. W. Atwood Jr, and Z. T. Welch. Implementing
level 4 liveness in declarative visual programming languages. In Visual
Languages, 1998. Proceedings. 1998 IEEE Symposium on, pages 126–
133. IEEE, 1998.

[5] D. Delimarschi, G. Swartzendruber, and H. Kagdi. Enabling integrated
development environments with natural user interface interactions. ICPC
2014, pages 126–129, New York, NY, USA, 2014. ACM.

[6] R. DeLine and K. Rowan. Code canvas: zooming towards better
development environments. In Proc. of the 32nd ACM/IEEE ICSE-
Volume 2, pages 207–210. ACM, 2010.

[7] A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham,
E. L. Newman, and I. Fried. Cellular networks underlying human spatial
navigation. Nature, 425(6954):184–188, Sept. 2003.

[8] R. HELD and A. HEIN. Movement-produced stimulation in the
development of visually guided behavior. Journal of comparative and
physiological psychology, 56:872–876, Oct. 1963.

[9] A. Z. Henley and S. D. Fleming. The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mistakes.
In Proc. of the SIGCHI Conference on HFCS, CHI ’14, pages 2511–
2520, New York, NY, USA, 2014. ACM.

[10] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning barriers in end-
user programming systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on, pages 199–206. IEEE, 2004.

[11] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Trans. Softw. Eng.,
32(12):971–987, Dec. 2006.

[12] A. Kuhn, D. Erni, and O. Nierstrasz. Embedding spatial software
visualization in the ide: An exploratory study. In Proc. of the 5th
International Symposium on Software Visualization, SOFTVIS ’10,
pages 113–122, New York, NY, USA, 2010. ACM.

[13] R. T. K. R. Maalej Walid, Tiarks Rebecca. ACM Transactions in
Software Engineering and Methodology, 23(4):31:1–31:37, 2014.

[14] D. A. Norman. The psychology of everyday things. Basic books, 1988.
[15] J. M. Noyes and K. J. Garland. Computer- vs. paper-based tasks: are

they equivalent? Ergonomics, 51(9):1352–1375, Sept. 2008.
[16] M. Oppezzo and D. L. Schwartz. Give your ideas some legs: The

positive effect of walking on creative thinking. Journal of experimental
psychology. Learning, memory, and cognition, Apr. 2014.

[17] C. Parnin and S. Rugaber. Programmer information needs after memory
failure. ICPC 2012, pages 123–132, June 2012.

[18] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and
M. van Dantzich. Data mountain: Using spatial memory for document
management. UIST ’98, pages 153–162, New York, NY, USA. ACM.

[19] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proc.., IEEE
Symposium on, pages 336–343. IEEE, 1996.

[20] M. Slater. Place illusion and plausibility can lead to realistic behaviour
in immersive virtual environments. Philosophical Transactions of the
Royal Society B: Biological Sciences, 364(1535):3549–3557, 2009.

[21] A. R. Teyseyre and M. R. Campo. An overview of 3d software
visualization. Visualization and Computer Graphics, IEEE Transactions
on, 15(1):87–105, 2009.

550550550550550550 ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Authorized licensed use limited to: Comenius University. Downloaded on February 28,2024 at 12:01:01 UTC from IEEE Xplore. Restrictions apply.

