
IDEVELOPAR: A Programming Interface to
enhance Code Understanding in Augmented Reality

1st Lucas Kreber
University of Trier

Trier, Germany

kreberl@uni-trier.de

2nd Stephan Diehl
University of Trier

Trier, Germany

diehl@uni-trier.de

3th Patrick Weil
University of Trier

Trier, Germany

s4paweil@uni-trier.de

Abstract—During software maintenance developers spend a
considerable amount of time on tasks like navigating, identifying
required code locations or tracing various call hierarchies. The
classical tabbed interfaces, as found in modern IDEs, are not ideal
for such tasks, leading to an inefficient workflow containing many
context switches. Therefore, several programming environments,
like Code Bubbles, were proposed to overcome these issues by
allowing users to freely arrange code fragments on a canvas to
make relations more explicit and better understand the codebase.
Relations are made explicit using visual links or extra space
between groups of code fragments. As a consequence, these
approach quickly run out of screen space. In this paper, we
present IDEVELOPAR, a tool to enhance code understanding in
augmented reality. Due to the use of AR, a user is not restricted
anymore by limited display sizes and can use the entire physical
space as a workspace for placing and grouping code fragments
as well as making changes to the codebase. First, we introduce
the views and interactive functionalities of our tool. Next, we
illustrate the usefulness of the tool by navigating an example
program to locate and fix a bug. Finally, we briefly discuss the
results of a cognitive walk-through using the cognitive dimension
framework as well as a formative user study to identify potential
usability problems. Moreover, in this study the participants also
mentioned several advantages of our approach over the classical
one. Furthermore, we found that over time the participants
developed their own placement strategies.
Video URL: https://youtu.be/wCNkLS1qQfM

Index Terms—augmented reality, programming tool, program
comprehension, code navigation

I. INTRODUCTION

Software complexity has increased massively over the last

decades, leading to an ever-growing codebase in software

projects, where maintenance is becoming more and more

critical. High-level maintenance tasks like correcting faults,

improving run-time or memory performance, extending func-

tionality, or adapting to a changed environment include low-

level tasks like reading, navigating and editing source code. In

particular, developers have to identify relevant code fragments

when working on such tasks. Finding these code fragments is

non-trivial and very time-consuming. For example, in a study

Ko et al. [1] found that developers spend 35% of their time

solely on navigation.

While modern integrated development environments (IDEs)

facilitate code navigation, their visual interfaces have a bento-

box design that partitions the available screen space into

separate areas [2]. Programmers typically need to switch

between tabs in order to navigate to a different file. As a result,

it is quite hard to remember more than a few navigation steps

and already seen code fragments.

Alwis et al. [3] identified several factors potentially trigger-

ing disorientation while working on a software project. There

is an absence of connecting navigation context. Switching

tabs does not lead to a visual connection between files.

Furthermore, a developer can not see all the necessary in-

formation required for a specific task. So there is a lack

of surrounding context regarding the viewed source code.

This behavior finally leads to a redundant and inefficient

workload. One approach to overcome these issues are the

so-called ”Code Bubbles” that visually link different code

views and display these views side by side on the same

canvas [4]. In a study the authors compared their approach

with a traditional IDE (Eclipse) and found that programmers

using Code Bubbles successfully completed significantly more

program understanding tasks as well as that it took them

significantly less time [5].

However, the approach of integrating such a visualiza-

tion directly into the IDE has the significant flaw of finite

screen space. Even though the minimum display size of 24”

recommended by the authors is today’s standard in almost

every workplace, it reaches its limit when displaying many

code fragments or using a laptop computer. Therefore, in

this paper, we describe IDEVELOPAR, an Augmented Reality

Application that adopts the approach of linked code views

from Code Bubbles and leverages the HoloLens 2 to extend

the developer’s workspace beyond the limited screen space to

an almost infinite space using AR. When using AR, all the

code fragments opened during navigation are placed in the

surrounding room as 3D objects. These visual objects help

users build spatial awareness of the opened code fragments.

Navigating in the AR space also creates visual links between

opened code fragments to visualize the current navigation his-

tory as well as call and usage dependencies. Due to the almost

unlimited space, a single code fragment will not disappear, so

context switches are brought to a minimum. All these aspects

are promising to facilitate the code comprehension of existing

projects and simplify the overall very challenging process of

navigation.

Our tool provides a fully functional programming interface

parallel to an existing IDE where code fragments can be freely

87

2022 Working Conference on Software Visualization (VISSOFT)

978-1-6654-8092-5/22/$31.00 ©2022 IEEE
DOI 10.1109/VISSOFT55257.2022.00017

20
22

 W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

V
is

ua
liz

at
io

n
(V

IS
SO

FT
) |

 9
78

-1
-6

65
4-

80
92

-5
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
V

IS
SO

FT
55

25
7.

20
22

.0
00

17

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

arranged in the surrounding physical space. IDEVELOPAR
supports basic functions to open, navigate and edit arbitrary

code fragments. A developer can use the tool either simulta-

neously to an IDE or exclusively in the AR space, where all

key features of the IDE are provided and accessible through

gesture control. Using an augmented space can further support

developers in reducing their mental load, as shown by Tang

et al. [6], leading to a more efficient and effective workflow.

In the following, we first present the features of our tool in

Section II, then we demonstrate its usefulness by describing

how to identify and fix a bug in an example program in

Section III. In Section IV we present the results of a cognitive

walk-through and a formative user study. Finally, we briefly

discuss related work in Section VI and Section VII concludes

this paper.

II. IDEVELOPAR
IDEVELOPAR1 is our approach for supporting developers

with a fully functional programming environment in Aug-

mented Reality. The tool consists of two parts, the actual aug-

mented reality application running on the HoloLens 2 and any

IDE out of the JetBrains family running on a regular computer.

Although, our current prototype only supports Java, without

much effort, the tool can be adapted to every programming

language supported by one of the JetBrains IDEs.

To prepare the IDE for the use of our tool, one only needs

to install a plugin that starts all the required infrastructure used

by the tool directly in the IDE. All requested information will

be sent over the established network connection from the IDE

directly to the HoloLens 2, including source code and code

completions. All the logic, code analysis, etc., runs in the IDE.

A. Linked Code Panels in AR

The code panel is the core element of the tool, which visu-

ally represents a code fragment of the project using augmented

reality. A code fragment is either the code of an entire class, a

single method or a single constructor. For example, the panel

in Figure 3:A shows the code of a Java class. Most of the

space is taken up by the code, which automatically uses the

color scheme of the IDE. The fully qualified name of a class or

method is shown in the lower area of the panel. All changes in

a code panel are directly synced to the connected IDE. Various

buttons are available in the upper right area of the panel. These

are used resize the panel or to close the panel or the complete

sub-tree with the panel as its root.

In a code panel a user can click at a class name, a method

or a constructor call. As a result a new code panel with the

related code fragment will be opened. To indicate the relation

to the original code panel a visual link is drawn to connect it to

the newly opened code panel. If a user followed a method or

constructor call the link is colored green, if the user opened a

class declaration the link is colored blue. The emerging code-

panel tree, see f.e. Figure 3:B, not only visually represents the

navigation history, but depending on the navigation strategy of

1The acronym is a composition of the three central core features: IDE,
development and AR

Fig. 1. Hand Menu. Menu for controlling basic functions (switch to
programming mode, run code on IDE and show project view). The menu
appears as soon as the user raises a hand and turns its palm towards their
face.

the user shows parts of the static call graph or the aggregation

structure.

Depending on the distance between the code panel and

the user, the font may be too small, making it impossible to

read the source code in it. Therefore, if a certain distance

is exceeded the information in the code panel is shown at a

different level of detail (semantic zooming) with a larger font

size. The code panel will automatically switch to an overview

representation consisting of only basic information such as

the name of the opened code fragment, the corresponding

package path or the type of the opened code (class or method).

Semantic zooming allows the user to keep track of all open

code panels without placing them in close proximity, see

Figure 3:B.

B. Code Navigation

We strived to design all interactions to feel as natural and

intuitive as possible for a user, allowing an efficient workflow

without putting too much effort into managing only the tool’s

controls.

Basic functionalities are controlled via the hand menu

(Figure 1). It appears as soon as a user raises their hand

and points the palms towards their face. In the first prototype

version, the hand menu has three options: Switching the

programming mode on and off, compiling and running the

program in the desktop IDE, and opening the project overview.

A drop-down menu appears on the right side of the hand menu

by clicking the project view option, displaying all available

classes structured in the standard package-sorted way in a

hierarchical menu (an indented tree similar to the way they

are shown in the project tab in the IDE). Packages can be

folded and unfolded by clicking on them. The user can scroll

the menu using up and down buttons. Clicking on one of the

classes will open a new code panel with the code of the class.

The user can scroll through the program code using the

HoloLens 2 eye-tracking functionality. By either looking at the

top or the bottom of a code panel, the text will scroll in the

appropriate direction. When reading longer passages of code,

88

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

the text will automatically scroll at the speed of the current

reader, without any additional action by the user.
Once the user has opened the first code panel, there are

two ways of opening new code panels: via the hand menu as

described above or by clicking at a method call or class name

in the code shown in a code panel.
When clicking on a method call, the user can choose if the

newly opened code panel should display only the requested

method code or the entire class code containing the specific

method (See Figure 3:C). The equivalent applies when clicking

on a class name. Here a user can choose to open only

the constructor of the class or the entire code of the class.

Whether class or method, every newly opened code panel is

connected to its parent panel via a visual link. As a result the

navigation history becomes visible in form of a code-panel

tree. Every navigation step following a method or constructor

call is indicated by a green link. All other navigation steps

are visually represented with blue links. Due to this approach,

a user can easily distinguish parts of the explored call graph

within the navigation tree.
When new code panels are created by navigation, an auto-

matic layout places the new panel right of its parent below

already existing siblings. The new panel and its siblings are

vertically centered relative to their parent. Figure 3:B shows

the layout strategy applied to new panels. Panels created over

the hand menu appear in front of the user. At any time, the user

can adapt the placement to their needs by simply grabbing a

panel and moving it around. The grabbing action is triggered

by the pinch gesture, i.e. by pinching the pointing finger and

the thumb together. While moving a panel around, the user

can rotate the panel by rotating their hand.
Each code panel provides a button to activate an expansion

mode. While in this mode, the corresponding code panel can

be reduced or enlarged in size by grabbing one of its corners

and dragging it either inward or outward. Through this kind

of functionality, a user can adjust every code panel to their

own preferred size or just put individual, essential elements in

the foreground for better recognition.

C. Programming within Code Panels
The source code can be changed directly in each code panel

when the programming mode is activated over the hand menu.

After activation, a cursor appears in the focused code panel.

Through the connected Bluetooth keyboard, a user can make

changes as usual. The use of a virtual keyboard is possible but

currently not implemented. While typing, full code completion

is provided to support the user (See Figure 2).
All code changes are synced to the connected IDE if the

programming mode is activated. Thus a potential switch be-

tween the 2D desktop and the augmented reality environment

is no problem at all and possible without any further delays.

This option leads to a free choice of the preferred workplace

for a different set of work tasks.

III. DEMONSTRATION STUDY

In this section, we look at an example to demonstrate how

to use IDEVELOPAR to identify and fix a bug. The bug is

Fig. 2. Code panel in programming mode. In Line 22, the cursor is visible.
At the right, a list of code completions suggested by the IDE is shown.

located in a version of the game Super Mario [7] which is

implemented in Java. The bug manifests itself in the lack of

collision between opponents and the environment. We used

the same program and two more bugs in our formative user

evaluation in Section V-B.

Assume Jane has has already imported the game project

in Intellij.To start the IDEVELOPAR-Plugin she clicks at the

corresponding icon in the toolbar and puts on the AR glasses.

First, she executes the code by opening the hand menu and

clicking on “run code” to get a first impression of how the bug

affects the game. The game starts, and she can see that there

exists no collision between Goombas and bricks. Mario is not

affected by this bug. Therefore she starts searching for the

affected code location by opening the first code fragment. She

opens the hand menu again and clicks on “project view”. The

project view appears on the right side of the menu. Because

the collision is only missing for Goombas, she opens the

class Goomba. But the class Goomba does not reveal any

possible defects. Thus she follows the inheritance hierarchy

from Goomba to Enemy and continues to its superclass

GameObject. It contains the potentially important method

updateLocation() where the new location of an object

is set (line 67) by adding the horizontal velocity to the previous

x coordinate. This is not wrong but could result in incorrect

positions if faulty values are used for the velocity. For this rea-

son, she only closes the two previous code panels and moves

the code fragment containing the GameObject code aside for

later inspection. Next, she needs to identify the code location

of the collision detection. She starts searching in the class

GameEngine that contains the main() method. This class

consists of several hundred lines of code, so she scrolls down

the code by looking at the bottom of the displayed code panel

until she spots a run() method. This method calls the method

gameLoop() regularly. By clicking on gameLoop() and

choosing “open method”, she follows the call and opens a

new code panel containing only the corresponding method

code. In this code the method checkCollisions() is

89

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. IDEVELOPAR in practice. The exemplary procedure from section III is shown. (A) Opened code panel (B) Two independent, visual linked emerging
code panel trees shown at a different level of detail (semantic zooming) (C) Code navigation, when clicking on a followable code element

called. Because Jane searches for the location of the collision

detection, she navigates into checkCollisions(). The

method body shown in the new code panel only contains

the line mapManager.checkCollisions(), so calls are

actually delegated to another class. To get an overview of

the class MapManager, she clicks on the called method, but

this time she opens the entire code of the class and not only

the corresponding method. The class MapManager contains

various methods for loading the map, assigning points, man-

aging objects, and indeed many methods checking different

cases of collisions. To fade out all the methods of no interest,

Jane clicks again on mapManager.checkCollisions()
in the previous code panel, but now she opens only the corre-

sponding method code. In this code she quickly identifies a call

of the method checkEnemyCollisions(). Navigating to

the code of this method leads her to the program logic handling

the collisions of enemies, especially of Goombas. Jane finds a

line of code (line 229) where the horizontal velocity is set to

the current value of the object’s velocity if there is an inter-

section with a brick. By looking at the code panel of the class

GameObject which she opened at the beginning, she recalls

that the direction of enemies depends on the corresponding

velocity. And because this velocity does not change, it results

in the seen behavior that Goombas do not invert their direction

when they collide with a brick. To fix that, Jane she opens

the hand menu and enables the programming mode. Then she

changes the code in line 229 with the connected keyboard such

that the velocity is multiplied by -1. To test if her fix actually

solved the problem, Jane runs the program through the hand

menu. The bug is fixed.

IV. EVALUATION

To investigate the effectiveness and usability of

IDEVELOPAR, we conducted a two-stage evaluation. First,

our work group analyzed the tool based on the cognitive

dimension framework [8], a technique to evaluate the usability

of an existing system. The second stage was a formative user

study with a total of eight participants.

1) Cognitive Dimensions Framework: To get a first im-

pression regarding the state of IDEVELOPAR, we conducted a

lightweight analysis based on the cognitive dimension frame-

work. This framework “is a broad-brush evaluation technique

for interactive devices and for non-interactive notations” [8],

defining 14 different cognitive dimensions. Table I gives a

short overview of the different dimensions (for more detailed

descriptions of each dimension see the paper by Blackwell and

Green [9]).

Through the discussion of the different dimensions, we

identified the potential usability issues shown in Table II.

In order to not delay the formative user evaluation, we

decided to prioritize the identified problems and fix only those

that we found to be critical for the user evaluation. For the

remaining issues we decided that we would combine them with

the insights gained by the user study for a later revision of our

tool. Thus, we before the user study, we extended our tool to

address the first two points in Table II. This extended version

90

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I
LIST OF COGNITIVE DIMENSIONS BASED ON [9]

Dimension Description
Abstraction [CD1] types and availability of abstraction

mechanisms
Closeness of mapping [CD2] closeness of representation to domain
Consistency [CD3] similar semantics are expressed in

similar syntactic forms
Diffuseness [CD4] verbosity of language
Error-proneness [CD5] notation invites mistakes
Hard mental operations [CD6] high demand on cognitive resources
Hidden dependencies [CD7] important links between entities are

not visible
Premature commitment [CD8] constraints on the order of doing

things
Progressive evaluation [CD9] work-to-date can be checked at any

time
Role-expressiveness [CD10] the purpose of a component is readily

inferred
Secondary notation [CD11] extra information in means other than

formal syntax
Viscosity [CD12] resistance to change
Visibility [CD13] ability to view components easily
Provisionality [CD14] degree of commitment to actions or

marks

TABLE II
ISSUES IDENTIFIED USING THE COGNITIVE DIMENSIONS FRAMEWORK

Issue Dimensions
1 It should be possible to close a complete path of code

panels with one click.
CD3, CD12

2 Visual links should provide more information, e.g. by
using labeled links or different link types for different
dependencies.

CD5, CD7,
CD11

3 Currently, only classes and methods can be opened.
In addition, it should also be possible to display
arbitrary files.

CD1, CD2

4 Code panels should be more distinguishable by using
different shapes for different kinds of data (class,
method, or file).

CD1, CD13

5 A visual indication should be shown when several
identical code panels (same class or method) are
open.

CD6, CD7

6 It should be possible to split a code-panel tree, e.g.,
for rearranging subgroups of panels.

CD8

7 If navigating to an abstract class, the concrete imple-
mentation should be opened in a new code panel, or
at least the user should have a choice of opening it.

CD7

8 The state of the application should be persistent. The
previous session should be restored if the application
is closed and reopened.

CD11

9 It should be possible to pin comments to arbitrary
code panels in addition to accustomed comments
directly in the code.

CD11

10 It could help users to keep track of displayed code
panels if the code panels align with the direction of
their gaze. Similarly, it could be helpful if users could
pin selected code panels into their field of view.

CD13

is actually the one that we described in Section II. In the earlier

prototype, a user could only close a single code panel at a time.

So to close a complete sub-tree required many interactions

and thus a poor user experience. Thus, we implemented the

possibility to close complete (sub)-trees of code panels with

one action. Furthermore, we identified a lack of information

content on visual links. Therefore, we added a color-coding

to each visual link, depending on whether the link leads to a

class (blue link) or to a method (green link).

2) Formative User study: In addition to identifying more

usability issues, our user study focused on evaluating the

general usability our tool and potential advantages or disadvan-

tages of the approach. A total of 8 computer science students

participated in this study. Each participant had previously

completed our Advanced Programming course and thus has

appropriate programming skills. No one had used a HoloLens

2 before, so this kind of HMD was new to all of them. In

each evaluation run, two participants took part simultaneously

as a team. The task of each team was to identify and fix three

bugs in the given software, an object-oriented implementation

of Super Mario bros. implemented in Java [7]. The third bug

was mainly meant as a backup, in case the participants fixed

the first two bugs in less then 60 minutes.

Before the actual experiment, all participants completed a

two-phase tutorial to become familiar with the use of the

HoloLens 2 in general and the usage of our tool in particular.

First, they completed the interactive tutorial that comes with

the HoloLens 2, learning all the controls and gestures provided

by the HMD. Second, they worked through an interactive

tutorial designed in the same style, but tailored to the use

of our tool. At the beginning of each run, both participants

got a description of the current bug. Each bug considered on

its own was not hard to fix, but it was not trivial to locate the

defect in the code. So navigating to that location in the code

was one major challenge. Although we encouraged the teams

to fix all three bugs, it was not essential for the study that

they successfully completed all three tasks, but we were more

interested in their experience and that they actually used the

functionalities provided by the tool. All bugs could be repro-

duced by playing the game for a few seconds. The first bug

prevents enemies from colliding with the world, the second

bug leads to the possibility of unlimited jumping of Mario,

and the third bug left the points counter unchanged when

coins were collected. Each team worked in a pair programming

setting [10] with a driver and a navigator role. The driver

is the person who is actually writing and changing code. In

our setting, the driver wears the HoloLens 2 and works with

our IDEVELOPAR tool. The other participant, the navigator,

observes and corrects the work of the driver and suggests

strategies on how to solve the given task. The navigator sits

at a desktop computer with two screen. One screen shows the

IntelliJ IDE with our plugin, while the second screen shows a

live stream of the driver’s sight through the HoloLens 2. Both

participants were encouraged to communicate and think aloud

as much as possible [11]. We recorded the HoloLens 2 display

during the experiment, capturing every interaction performed

91

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

by the driver together with all holograms in the room. We

used the HoloLens 2 audio input to record the communication

among the team members. Additionally, we created logs of

every action performed by the driver with our tool. When a

team started to work on the next bug, they changed the driver

and navigator roles. At the end, the participants were asked

to fill in a short questionnaire containing a System Usability

Scale (SUS) part [12], [13], a User Experience Questionnaire

(UEQ) [14], and some rating questions about the usability of

particular features our the tool. Finally, we conducted a short

interview, which was also recorded.

After the first run, we found that the participants of the first

team had severe problems opening new code panels via the

hand menu. It turned out that during the development of the

tool, we had got accustomed to a workaround such that we

we were no longer aware that it initially was a workaround.

Thus, we decided to fix this problem first, as it almost made

the tool unusable. The other three teams all used this revised

prototype.

V. RESULTS

A. Quantitative Analysis

For the quantitative analysis, we used the data of the SUS,

the UEQ and the feature rating. Due to the low number

of participants, we did not perform any statistical tests but

only provide descriptive statistics in form of mean values in

Figure 4 and Figure 5. In these barcharts the 95% confidence

intervals are also shown to indicate the degree of uncertainty

of the result. Both the classical SUS score 72.19 (with 95%

confidence interval [52.72 - 85.00]) as well as improved

SUS score for small samples [15] 69.45 indicate that the

participants perceived the overall usability of the prototype

as acceptable (in the OK-to-good range).

Figure 4 shows the results of the perceived usability and

usefulness of the features of the tool. We used a 6-point

scale from 1=Very hard to use to 6=Very easy to use. The

participants could also indicate that they didn’t use a feature.

Almost every feature of IDEVELOPAR is generally rated as

useful, with values between five and six. Only the usefulness of

resizing a code panel and semantic zooming was rated slightly

below average.

In general, the usability was primarily positive. All but

one values lie at four or above. However, we could identify

some features with usability problems. Code editing (F6) was

rated as highly useful but only reached an average usability

rating. The same applies to other features like opening new

code panels or scrolling the code. Thus, inconsistent ratings

of a feature (F2, F9-F11) suggest that it should be improved,

but do not indicate what the concrete problems are. To gain

more insight about these cases, we actually looked at the

ratings of each team before the interviews, and asked them to

comment on features which they rated with high usefulness,

but lower usability. One participant mentioned, “You must

become familiar with the tool first until you can operate

these functions properly.” So it is definitely plausible that the

usability ratings may raise after a longer period of use.

0 1 2 3 4 5 6

Hand menu (F1)

Project overview (F2)

Moving code panels (F3)

Resizing code panels (F4)

Closing code panels (F5)

Code edi ng (F6)

Naviga ng (F7)

Scrolling in code panels (F8)

Eye scroll lock (F9)

Seman c zooming (F10)

Running the code (F11)

Usability Usefulness

Fig. 4. Average ratings per feature regarding usability and usefulness. The
error bars show the 95% confidence interval.

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

A
rac

veness

Persp
icu

ity

E
cie

ncy

Dependab
ilit

y

S
mula

on

Novelty

Bad Below Average Above Average

Good Excellent Mean

Fig. 5. Results of the User Experience Questionnaire. The error bars show
the 95% confidence interval.

Figure 5 shows the results of the UEQ. Compared with the

benchmark, our tool classifies above average except for the

efficiency category. However, because of the small number of

participants, it is also difficult to make statistically reliable

statements here. Still, we could observe that the results coin-

cide with the participants’ comments. Regarding the efficiency

aspect, a few participants perceived the tool as not as efficient

as their normal IDE: “In a normal IDE, the errors would have

been found more efficiently.” and for some, it was too slow to

operate: “So some things eat up too much time.” On the other

hand, the good values of the perspicuity category are reflected

in the user comments. One participant stated, “I had more of

an overview now of where I am, what I need to do right now.”

92

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

B. Qualitative Analysis
For our analysis we first transcribed the recorded interviews

and used a mix of open coding and theoretical (for the features)

coding to identify interesting phenomena in the data. As of yet,

we did not analyze the video and log data. In the following

we use the abbreviation GiPj to refer to participant j of group

i.
a) Features: For several features, no problems were

reported at all. For example, no group experienced problems

with semantic zooming (F10), “this minimized view was really

good” (G1P2) was the general opinion across all groups. Ad-

ditionally, moving and placing code panels (F3) was described

as a good usable feature.
On the other hand, for some of the features with inconsistent

ratings, we found very concrete descriptions of usability

problems. With respect to code editing (F6), it was mentioned

several times, that it was cumbersome to place the cursor

at the desired location. Although it was introduced to the

participants, that they can position the cursor by holding Ctrl

on the keyboard while looking at the corresponding code

location, most of them had problems to use it that way: “What

also didn’t work so well is clicking into the code that you

are actually in the line to edit. I tried that for a while, but

couldn’t get it to work” (G1P1). Another participant stated,

that it was unusual to move the cursor with the eyes and that

based on previous experience the Ctrl shortcut is associated

with a different kind of functionality: “With Ctrl, I am just

used to jump over words in normal IDEs” (G3P1).
The feature eye-scroll lock (F9) was almost not used during

the evaluation. But one participant had the problem to press

the corresponding button, located at the bottom of each code

panel, because the code scrolled unintentionally while moving

the eyes to focus the button: “You have to look at the button

somehow to press it, but during this time it keeps scrolling”

(G2P2).
The participants had very opposing opinions about scrolling

in code panels (F8) using eye-tracking. One said: “I find

scrolling with my eyes extremely exhausting” (G1P2), but in

contrast, another participant mentioned: “The scrolling over

the code, I found that actually very simple” (G3P2). In

addition, the participant (G1P2) has noted, “while scrolling,

you are looking for something in the code and can’t scroll

down and read at the same time”, but this is actually a

misconception of how eye-tracking based scrolling works.

When reading code in a code panel, the text will automatically

scroll down adapted to the reading speed. During the eval-

uation, several participants considered scrolling and reading

as two completely separate tasks, which leads to unnecessary

complexity. As a result, these participants may find scrolling

more tiring than those who understand scrolling and reading

as one task, leading to these opposing opinions.
b) Code-Panel Tree: Using IDEVELOPAR, the partici-

pants get a better overview of the project. They could build

a graph representation of the code fragments of interest and

navigate to their desired code locations. During the interview,

we got overall positive feedback regarding the question if the

tool improves code comprehension. One participant answered:

“I found it significantly easier to understand the program that

way, through all the graphs and such, than if I had just seen it

on the computer” (G1P2). Further, the participant mentioned

that “this [the overview] is much better here through this

graph. I see I started here, then I went that way, and now

I got there via these three detours because one method always

calls the next. And that’s not so easy with normal windows”

(G1P2).

c) Learning curve: A learnability effect was observable

within the last group, which found all three bugs. In their last

run, they used the tool very effectively and improved their

approach with the experiences gained from the previous tasks.

“I have now noticed the biggest advantage on the third try. I

now had much more overview of the code. I had one code

panel for the method and one for the class” (G4P2). This

feedback supports our hypothesis that a significant learning

effect occurs with prolonged use, which could increase the

effectiveness of the tool over time. But in general, we could

observe a wide range of different learning curves. Some got

along quickly, and others took a little longer to operate the

tool properly. But in the end, we often got the feedback that

“it was like you would kind of expect it to be” (G4P1), which

is an essential aspect of an intuitive, usable tool.

d) Strategies: Furthermore, the participants described

different approaches how they used the tool to solve the tasks.

They often followed the same approach as in a classical IDE,

but with increasing time of use, most participants developed

some placement strategies. These range from more enhanced

code view placements to usage of the surrounding physical

space: “For example, you can go to the corner now, say I’m

going to open the class here, and a few methods that I need

and maybe go somewhere else and open a few more classes

there” (G4P2) towards unexpected strategies. One participant

used a office swivel chair to build a 360-degree workspace to

place the code views all around him.

e) Suggested extensions: Besides all this substantial

feedback, the participants missed some advanced features they

knew from their IDE. For example, they missed a visual cue if

a class, method, or variable is not used somewhere in the code.

Furthermore, they missed some basic error highlighting in the

code panels. They additionally had some problems regarding

the efficiency of controlling the tool. Features do not work

on the first try due to a mix of a faulty implementation of

the software and some technical tracking problems of the AR

glasses. Some participants have used wrong gestures, leading

to incorrect tracking and, therefore, to a poor user experience.

f) Beyond usability: Walking opens the free flow of ideas

and is a simple method to boost creative thinking [16]. As one

participant put it “if you sit, then I feel, it is harder to think,

as if you walk around a bit.”

VI. RELATED WORK

Researchers introduced many approaches and visualizations

to support developers in gaining a better understanding of their

source code and facilitate the overall programming process.

93

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

The survey by Sulir et al. [17] on visual augmentation of

source-code editors includes more than 100 approaches that

were published between 2002 and 2017. Many more have been

published since.

A. Information Needs and Diagrams

In general, it is hard for the human working memory to

keep track of all the related programming tasks: Navigate

through code, remember already visited code fragments, keep

an overview of call hierarchies, and much more. Therefore

developers tend to create visual representations of the current

software project, often in the form of various diagrams or

sketches. These kinds of visual representations of software

systems are promising for supporting developers during their

work [18]. In an empirical study Lee et al. [19] investigated

how to support developers with diagramming tools. In a first

step, the authors asked the participants what a diagram should

show to a developer. The most desired information mentioned

by the participants are: “Who calls a method/call hierarchy”,

“Who uses/references who”, “The paths navigated through

methods” and “Type hierarchy”. In general, it turns out that

such diagrams help to find a way around the software. One

participant said: “It would be useful to develop a cognitive map

of the software, and it would help to navigate relationships”.

While this quote shows the possibilities of such visualizations,

participants also mentioned that the available screen size is not

sufficient for showing diagrams and that it is hard to display

all desired information.

Fleming et al. [20] applied Information Foraging Theory to

investigate how software developers use tools to perform tasks

like debugging, refactoring and code reuse. Here, programmers

are seen as information predators who gather information

(prey) using evolutionary foraging mechanisms to reduce en-

ergy. In particular, predators need to predict how much useful

prey they will gather on a path. In an empirical study with

professional developers Piorkowski et al. [21] found that over

50% of developers’ navigation choices produced less value

than they had predicted and nearly 40% cost more than they

had predicted.

B. Novel User Interfaces for Programming

Code Canvas [2] was proposed as an alternative to bento-

box design of existing development environments. In Code

Canvas the files of a software project are placed on a possibly

infinite canvas, such that developers can create their own

software map to better exploit their spatial memory.

Code Bubbles [4], [5], that we briefly described in the

introduction, provides a working set-based interface for IDEs

(especially for Eclipse). It allows a user to create side-by-

side code views, displaying not necessarily file-based data

but making it possible to show only the essential fragments

out of a method or class. When navigating through the code,

new views will open automatically when following, e.g.,

method calls. Connecting edges between the views visually

highlights all the emerging call hierarchies and thus gives an

structured overview of the navigation history. In subsequent

work, the Code Bubbles approach was reused to create a user

interface for debugging [22]. Patchworks [23] and its successor

CodeRibbon [24] provide a ribbon-based interface. A ribbon

is basically a canvas that is only infinite in horizontal direction

where visual elements, here document editors, can be placed

on a grid.

C. AR for Software Engineering

In a vision paper [25] Merino et al. discussed the potential

of AR in the context of software development with respect

to several general aspects like collaboration, communication,

embodiment, mediated reality, mobility, multi-device und per-

vasiveness. Currently, there exist only few papers in the

software engineering community (and many of those are short

papers) on the use of AR in software engineering. Most

papers use AR to place existing 3D software visualizations

(e.g. city metaphor [26], [27] or 3D tree visualizations [28]

in the physical space and use these visualization to analyze

software architecture [29]–[31], software performance [26],

[32] or project management [32], [33].

VII. CONCLUSION

We have presented IDEVELOPAR, a novel AR-based user

interface to enhance code understanding. By allowing the

user to place code panels freely in the physical space around

them they are no longer limited by the display size nor are

they bound to sit next to their desktop computer. While the

main goal of our formative study was to gain insights on

how to improve the overall usability of our tool, we also

found that the participants felt that the tool improved code

comprehension compared to their classical IDE. Although the

statistical analysis has to be considered with caution, it is in

line with the results of the qualitative study that a user can

get a better overview with the help of the tool and that for

some of the features with inconsistent rating the participants

mentioned concrete usability problems.

The main goal of the work presented in this paper was to

develop linked code views in AR and improve their usability.

As a next step we intend to leverage AR to enable novel usage

scenarios where code views are linked to objects in the real

world. As part of our future work, we also want to extend the

quantitative analysis by performing additional user sessions.

Furthermore, we will further improve the user-interface based

on the results of our study and add more features.

REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, dec 2006.

[2] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2, 2010, pp. 207–210.

[3] B. de Alwis and G. Murphy, “Using visual momentum to explain
disorientation in the Eclipse IDE,” in Visual Languages and Human-
Centric Computing (VL/HCC’06), 2006, pp. 51–54.

94

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles: rethinking
the user interface paradigm of integrated development environments,” in
2010 ACM/IEEE 32nd International Conference on Software Engineer-
ing, vol. 1, 2010, pp. 455–464.

[5] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, “Code
bubbles: A working set-based interface for code understanding and
maintenance,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 2503–2512. [Online].
Available: https://doi.org/10.1145/1753326.1753706

[6] A. Tang, C. Owen, F. Biocca, and W. Mou, Performance Evaluation of
Augmented Reality for Directed Assembly. London: Springer London,
2004, pp. 311–331. [Online]. Available: https://doi.org/10.1007/978-1-
4471-3873-01 6

[7] Çandıroğlu. Ahmet, S. Unas, and B. Umut, “Classic
Super Mario Bros. game implemented with Java,”
https://github.com/ahmetcandiroglu/Super-Mario-Bros, 2022.

[8] T. Green and M. Petre, “Usability analysis of vi-
sual programming environments: A ‘cognitive dimensions’
framework,” Journal of Visual Languages & Computing,
vol. 7, no. 2, pp. 131–174, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900099

[9] A. Blackwell and T. Green, “Notational systems–the cognitive dimen-
sions of notations framework,” HCI models, theories, and frameworks:
toward an interdisciplinary science. Morgan Kaufmann, vol. 234, 2003.

[10] L. A. Williams, “Pair programming.” Encyclopedia of software engi-
neering, vol. 2, 2010.

[11] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud
method: a practical approach to modelling cognitive,” London: Aca-
demicPress, vol. 11, 1994.

[12] J. Brooke, “Sus: a retrospective,” Journal of usability studies, vol. 8,
no. 2, pp. 29–40, 2013.

[13] ——, “SUS: a “quick and dirty’usability,” Usability evaluation in
industry, vol. 189, 1996.

[14] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of
a user experience questionnaire,” in Symposium of the Austrian HCI and
usability engineering group. Springer, 2008.

[15] N. Clark, M. Dabkowski, P. J. Driscoll, D. Kennedy, I. Kloo, and H. Shi,
“Empirical decision rules for improving the uncertainty reporting of
small sample system usability scale scores,” International Journal of
Human–Computer Interaction, vol. 37, no. 13, pp. 1191–1206, 2021.

[16] M. Oppezzo and D. Schwartz, “Give your ideas some legs: The
positive effect of walking on creative thinking,” Journal of experimental
psychology. Learning, memory, and cognition, vol. 40, 04 2014.

[17] M. Sulı́r, M. Bačı́ková, S. Chodarev, and J. Porubän,
“Visual augmentation of source code editors: A systematic
mapping study,” Journal of Visual Languages & Com-
puting, vol. 49, pp. 46–59, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X18301861

[18] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in FSE
2014, 2014.

[19] S. Lee, G. C. Murphy, T. Fritz, and M. Allen, “How can diagramming
tools help support programming activities?” in 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing, 2008, pp. 246–
249.

[20] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. M. Burnett, R. K. E.
Bellamy, J. Lawrance, and I. Kwan, “An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks,” ACM
Transactions on Software Engineering and Methodology, vol. 22, no. 2,
2013. [Online]. Available: https://doi.org/10.1145/2430545.2430551

[21] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 97–108. [Online]. Available:
https://doi.org/10.1145/2950290.2950302

[22] A. Bragdon, K. Rowan, J. Jacobsen, R. DeLine, and
R. DeLIne, “Debugger canvas: Industrial experience with
the code bubbles paradigm,” in International Conference
on Software Engineering, June 2012. [Online]. Avail-

able: https://www.microsoft.com/en-us/research/publication/debugger-
canvas-industrial-experience-with-the-code-bubbles-paradigm/

[23] A. Z. Henley and S. D. Fleming, “The patchworks code editor:
Toward faster navigation with less code arranging and fewer navigation
mistakes,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 2511–2520. [Online].
Available: https://doi.org/10.1145/2556288.2557073

[24] B. P. Klein and A. Z. Henley, “Coderibbon: More efficient workspace
management and navigation for mainstream development environments,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2021, pp. 604–608.

[25] L. Merino, M. Lungu, and C. Seidl, “Unleashing the potentials
of immersive augmented reality for software engineering,”
in 27th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2020, London, ON, Canada,
K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs,
and M. Zhou, Eds. IEEE, 2020. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054812

[26] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf,
“PerfVis: Pervasive visualization in immersive augmented reality for
performance awareness,” in Companion of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE 2019,
V. Apte, A. D. Marco, M. Litoiu, and J. Merseguer, Eds. ACM, 2019.
[Online]. Available: https://doi.org/10.1145/3302541.3313104

[27] D. Baum, S. Bechert, U. W. Eisenecker, I. Meichsner, and R. Müller,
“Identifying usability issues of software analytics applications in
immersive augmented reality,” in Working Conference on Software
Visualization, VISSOFT 2020, Adelaide, Australia. IEEE, 2020.
[Online]. Available: https://doi.org/10.1109/VISSOFT51673.2020.00015

[28] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–12.

[29] R. Mehra, V. S. Sharma, V. Kaulgud, and S. Podder, “XRaSE: Towards
virtually tangible software using augmented reality,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA. IEEE, 2019. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00135

[30] R. Mehra, V. S. Sharma, V. Kaulgud, S. Podder, and A. P.
Burden, “Towards immersive comprehension of software systems using
augmented reality - an empirical evaluation,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia. IEEE, 2020. [Online]. Available:
https://doi.org/10.1145/3324884.3418907

[31] C. S. C. Rodrigues, C. M. L. Werner, and L. Landau, “VisAr3D: an
innovative 3D visualization of UML models,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, L. K. Dillon, W. Visser, and L. A. Williams, Eds. ACM,
2016. [Online]. Available: https://doi.org/10.1145/2889160.2889199

[32] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring,
“Synchrovis: 3D visualization of monitoring traces in the city
metaphor for analyzing concurrency,” in 2013 First IEEE Working
Conference on Software Visualization (VISSOFT), Eindhoven,
The Netherlands, A. Telea, A. Kerren, and A. Marcus,
Eds. IEEE Computer Society, 2013. [Online]. Available:
https://doi.org/10.1109/VISSOFT.2013.6650520

[33] V. S. Sharma, R. Mehra, V. Kaulgud, and S. Podder, “An extended
reality approach for creating immersive software project workspaces,”
in Proceedings of the 12th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE@ICSE 2019,
Montréal, QC, Canada, Y. Dittrich, F. Fagerholm, R. Hoda, D. Socha,
and I. Steinmacher, Eds. IEEE / ACM, 2019. [Online]. Available:
https://doi.org/10.1109/CHASE.2019.00013

95

Authorized licensed use limited to: Comenius University. Downloaded on February 29,2024 at 14:36:32 UTC from IEEE Xplore. Restrictions apply.

