

UNIVERZITA KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A

INFORMATIKY

Robocup at Home Education

BAKALÁRSKA PRÁCA

2023 Matúš Granec

UNIVERZITA KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A

INFORMATIKY

Robocup at Home Education

BAKALÁRSKA PRÁCA

Študijný program: Aplikovaná informatika

Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Vedúci práce: Mgr. Pavel Petrovič, PhD.

Bratislava 2023 Matúš Granec

Poďakovanie: Rád by som vyjadril veľkú vďaku môjmu školiteľovi a vedúcemu práce Mgr.

Pavlovi Petrovičovi, PhD. za vedenie práce, hodiny strávené pri oprave robota, množstvo

cenných rád a trpezlivosť pri odpovedaní na moje otázky. Takisto by som sa rád poďakoval

svojej rodine za všetku podporu, ktorú som z ich strany dostával počas písania práce.

Čestné vyhlásenie:

Čestne vyhlasujem, že som bakalársku prácu Robocup at Home Education vypracoval

samostatne s použitím uvedenej literatúry, zdrojov dostupných na internete a využitím

teoretických a praktických vedomostí.

V Bratislave dňa 19.5.2023 __________________

 Matúš Granec

Abstrakt

V tejto bakalárskej práci, ktorá sa zameriava na tému "Robocup at Home Education" sme

pripravili mobilného robota Jupiter na účasť v súťaži Robocup at Home. Jupiter, postavený na

platforme TurtleBot 2, je vybavený LiDAR-om, dvoma 3D kamerami, ramenom s piatimi

stupňami voľnosti, výkonným počítačom s operačným systémom Linux, mikrofónom a

dotykovou obrazovkou. Robot je určený pre stredoškolskú kategóriu súťaže Robocup at Home,

v ktorej roboty pracujú v interiéri a pomáhajú jednotlivcom v rôznych situáciách. Okrem toho

je robot vhodný pre rôzne vzdelávacie účely a výskumné aplikácie v rámci Katedry aplikovanej

informatiky.

Robota sme pripravili na súťaž vytvorením tutoriálu pozostávajúceho z dobre

zdokumentovaných príkladov, ktoré sú relevantné pre výzvy v Robocup at Home Education.

Vytvorili sme tutoriál, ktorý pomôže slovenským tímom zapojiť sa do tejto kategórie s ich

vlastnými Jupiter robotmi. Tento tutoriál slúži aj ako cenný zdroj pre výučbu predmetov

súvisiacich s umelou inteligenciou v rámci Katedry aplikovanej informatiky. Práca obsahuje

niekoľko netriviálnych príkladov použitia, ktoré demonštrujú možnosti vyvinutej knižnice.

Kľúčové slová:

Robocup at Home, TurtleBot 2, mobilný robot, tutoriál, robotické rameno, počítačové videnie,

umelá inteligencia, Robot Operating System

Abstract

In this bachelor's thesis, which focuses on the topic of "Robocup at Home Education", we

prepared the mobile robot Jupiter for participation in the Robocup at Home competition. Jupiter,

built on the TurtleBot 2 platform, is equipped with a LiDAR, two 3D cameras, a 5-DOF arm,

a powerful Linux-based computer, a microphone, and a touch screen. The robot is designed for

the high school category of Robocup at Home, where robots operate in indoor environments

and assist individuals in need. Additionally, the robot is suitable for various educational

purposes and research applications within the Department of Applied Informatics.

We prepared the robot for competition by creating a tutorial consisting of well-

documented examples that are relevant to the challenges in Robocup at Home Education. We

created a tutorial, which will assist Slovakian teams in participating in this category with their

own Jupiter robots. Furthermore, the tutorial serves as a valuable resource for teaching subjects

related to artificial intelligence within the Department of Applied Informatics. The thesis

includes several non-trivial exemplary use cases that demonstrate the capabilities of the

developed library.

Keywords:

Robocup at Home, TurtleBot 2, mobile robot, tutorial, robotic arm, computer vision, artificial

intelligence, Robot Operating System

Obsah

Úvod ... 13

1 Teoretické východiská ... 15

1.1 Slovník pojmov ... 15

1.2 Robot Jupiter .. 16

1.2.1 Počítač .. 16

1.2.2 Dotykový displej ... 16

1.2.3 LiDAR .. 17

1.2.4 ORBBEC ASTRA 3D kamera ... 18

1.2.5 Robotické rameno .. 18

1.2.6 Kobuki základňa .. 19

1.3 ROS – Robot Operating System .. 20

1.3.1 Ciele ROS-u ... 21

1.3.2 Základné koncepty ROSu .. 22

1.3.3 Distribúcie ROSu ... 23

1.3.4 ROS Kinetic ... 24

1.3.5 ROS2 ... 24

1.3.6 TurtleBot Gazebo .. 25

1.3.7 RViz ... 25

1.4 Ďalšie nástroje a knižnice ... 26

1.4.1 Python .. 26

1.4.2 OpenCV ... 27

1.4.3 Numpy .. 27

1.4.4 Pygame ... 28

1.4.5 SpeechRecognition ... 28

1.4.6 gTTS .. 28

1.4.7 YOLOv3 ... 29

1.4.8 Darknet ... 29

1.4.9 Raspberry Pi 4 ... 29

1.4.10 TensorFlow ... 30

1.4.11 Google Coral USB Accelerator .. 30

1.5 Robocup@Home Education ... 31

1.5.1 Pravidlá Robocup@Home Education Challenge... 31

1.5.2 Implikácie vyplývajúce z pravidiel .. 33

2 Návrh riešenia ... Chyba! Záložka nie je definovaná.

2.1 Ovládanie hlasom .. Chyba! Záložka nie je definovaná.

2.1.1 Architektúra programu .. Chyba! Záložka nie je definovaná.

2.1.2 Komunikácia komponentov Chyba! Záložka nie je definovaná.

2.2 Detekcia prekážok pomocou LiDARu Chyba! Záložka nie je definovaná.

2.2.1 Architektúra programu .. Chyba! Záložka nie je definovaná.

2.2.2 Komunikácia komponentov Chyba! Záložka nie je definovaná.

2.3 Nájdenie pohára v obraze a presunutie ramenom Chyba! Záložka nie je definovaná.

2.3.1 Architektúra programu .. Chyba! Záložka nie je definovaná.

2.3.2 Komunikácia komponentov Chyba! Záložka nie je definovaná.

2.4 Rozpoznanie osoby podľa oblečenia Chyba! Záložka nie je definovaná.

2.4.1 Architektúra programu .. Chyba! Záložka nie je definovaná.

2.4.2 Komunikácia komponentov Chyba! Záložka nie je definovaná.

3 Implementácia .. Chyba! Záložka nie je definovaná.

3.1 Ovládanie hlasom .. Chyba! Záložka nie je definovaná.

3.1.1 Node na rozpoznanie reči Chyba! Záložka nie je definovaná.

3.1.2 Node na spracovanie príkazov Chyba! Záložka nie je definovaná.

3.1.3 Komponent spätnej väzby Chyba! Záložka nie je definovaná.

3.1.4 Potenciálne vylepšenia a využitie v budúcnosti Chyba! Záložka nie je definovaná.

3.2 Detekcia prekážok pomocou LiDAR-u Chyba! Záložka nie je definovaná.

3.2.1 Node na snímanie okolia Chyba! Záložka nie je definovaná.

3.2.2 Node na pohyb robota .. Chyba! Záložka nie je definovaná.

3.2.3 Potenciálne vylepšenia a využitie v budúcnosti Chyba! Záložka nie je definovaná.

3.3 Nájdenie pohára v obraze a presunutie ramenom Chyba! Záložka nie je definovaná.

3.3.1 Node na snímanie obrazu Chyba! Záložka nie je definovaná.

3.3.2 Komponent na nájdenie súradníc pohára Chyba! Záložka nie je definovaná.

3.3.3 Node na odoslanie súradníc pohára Chyba! Záložka nie je definovaná.

3.3.4 Node na vypočítanie pozície ramena Chyba! Záložka nie je definovaná.

3.3.5 Node na pohyb ramena ... Chyba! Záložka nie je definovaná.

3.3.6 Potenciálne vylepšenia a využitie v budúcnosti Chyba! Záložka nie je definovaná.

3.4 Rozpoznanie osoby podľa oblečenia Chyba! Záložka nie je definovaná.

3.4.1 Node na snímanie obrazu Chyba! Záložka nie je definovaná.

3.4.2 Klient na odoslanie obrázku Chyba! Záložka nie je definovaná.

3.4.3 Server na spracovanie obrázku Chyba! Záložka nie je definovaná.

3.4.4 Komponent na klasifikáciu obrázku Chyba! Záložka nie je definovaná.

3.4.5 Node na odoslanie výsledku klasifikácie Chyba! Záložka nie je definovaná.

3.4.6 Node na rozpoznanie osoby Chyba! Záložka nie je definovaná.

3.4.7 Komponent spätnej väzby Chyba! Záložka nie je definovaná.

3.4.8 Potenciálne vylepšenia a využitie v budúcnosti Chyba! Záložka nie je definovaná.

4 Tutoriál .. Chyba! Záložka nie je definovaná.

5 Záver .. Chyba! Záložka nie je definovaná.

6 Literatúra ... Chyba! Záložka nie je definovaná.

Úvod

Robocup@Home je renomovaná medzinárodná súťaž, ktorá sa zameriava na vývoj

autonómnych robotov schopných asistencie ľuďom v domácom prostredí a organizuje sa od

roku 2006 ako súčasť celej iniciatívy RoboCup, ktorej sa zúčastňujú predovšetkým univerzitné

tímy. V rámci súťaží RoboCup existujú aj juniorské kategórie zastrešené iniciatívou RoboCup

Junior. V posledných rokoch vznikla aj kategória RoboCup@Home Education určená najmä

účastníkom do 19 rokov.

Edukačný aspekt tejto súťaže je nemenej dôležitý, pretože umožňuje žiakom a

študentom skúmať oblasť robotiky, umelej inteligencie a interakcie medzi človekom

a robotom. Pripraviť robota Jupiter na použitie v tejto súťaži v kategórii Robocup@Home

Education je jedným z cieľov tejto práce. Ďalším cieľom tejto bakalárskej práce je vytvoriť

a poskytnúť obsiahly tutoriál pozostávajúci z dobre zdokumentovaných príkladov použitia

robota relevantných pre možné výzvy v kategórii Robocup@Home Education. Tutoriál má

slúžiť ako cenný zdroj informácií pre slovenské tímy, ktoré sa plánujú zúčastniť súťaže

s robotom Jupiter.

Vzhľadom k tomu, že ešte nedávno som aj ja bol žiakom strednej školy, resp. študentom

vysokej školy v nižšom ročníku, viem, aký je to pocit byť oboznámený s obrovským

množstvom informácií o niečom, čomu vôbec nerozumiem. Programovanie je téma na jednej

strane častokrát zaujímavá a lákavá, no na druhej strane aj veľmi zložitá a časovo náročná na

jej pochopenie. Aspekt náročnosti programovania môže odradiť potenciálne šikovného

programátora. Preto má tutoriál slúžiť aj ako pomôcka na ušetrenie času, ktorý by programátor

strávil hľadaním tutoriálov na internete a tým uľahčiť mu začiatky práce s robotom Jupiter.

Práca sa nebude zameriavať iba na teoretické aspekty kategórie Robocup@Home

Education, ale poskytne aj niekoľko netriviálnych a praktických ukážok práce s robotom

Jupiter. Tieto príklady predvedú schopnosti robota, akými sú interakcia s používateľom,

počítačové videnie, rozpoznanie objektov, snímanie svojho okolia a pohyb po miestnosti.

Prezentovaním týchto príkladov sa v práci snažíme motivovať žiakov stredných škôl, aby sa

zúčastňovali vyššie uvedenej súťaže, ale aj študentov a výskumníkov, ktorí sa zaujímajú o

prieskum v oblasti robotiky a umelej inteligencie.

V prvej kapitole si priblížime robot Jupiter a jeho jednotlivé časti, medzinárodnú

iniciatívu Robocup@Home, rovnomennú súťaž, súťažnú kategóriu Robocup@Home

Education, systém ROS, na ktorom robot funguje a v neposlednom rade aj ďalšie technológie,

ktoré sme v práci s robotom využili.

Druhá kapitola bude slúžiť na predstavenie návrhu jednotlivých netriviálnych ukážok

práce s robotom Jupiter. Popíšeme si cieľ každej ukážky, navrhneme architektúru komponentov

a komunikáciu medzi nimi.

V tretej kapitole sa budeme venovať samotnej implementácii komponentov z ukážok z

kapitoly Návrh systému a bližšie si rozoberieme jednotlivé komponenty programov a pozrieme

sa aj na potenciálne vylepšenia ukážok v budúcnosti.

1 Teoretické východiská

V tejto kapitole si popíšeme robota Jupiter, s ktorým pracujeme a jeho komponenty, ktoré

budeme využívať a systém ROS, na ktorom robot funguje. Takisto si povieme o edukačnej

iniciatíve Robocup@Home Education, do ktorej sa dá s robotom Jupiter zapojiť.

1.1 Slovník pojmov

V slovníku uvedieme niekoľko cudzích pojmov a skratiek, ktoré budeme v práci používať.

ROS – Robot Operating System – je open-source platforma pre vývoj a riadenie robotov,

poskytujúca nástroje a komunikačné mechanizmy pre jednotný a flexibilný vývoj

robotických aplikácií.

Topic – téma – je kanál, prostredníctvom ktorého môžu rôzne časti systému ROS posielať

správy medzi sebou.

Node – uzol – je samostatný výpočtový proces, ktorý vykonáva určité úlohy a

komunikuje s inými nodeami prostredníctvom správ a topicov pre výmenu dát.

Subscriber – odoberateľ – je komponent, ktorý prijíma správy zo špecifického topicu a

spracováva ich.

Publisher – vydavateľ – je komponent, ktorý posiela správy na špecifický topic, aby ich

mohli prijímať a spracovávať ostatné komponenty.

Service – služba – je mechanizmus, ktorý umožňuje dvojsmernú komunikáciu medzi

dvoma nodeami, kde jeden node poskytuje určitú službu a druhý ju môže volať a získať

výsledok.

Message – správa – je definovaná štruktúra dát, ktorá sa používa na prenos informácií

medzi nodeami cez topic.

Framework – rámec – je sada nástrojov, knižníc a pravidiel, ktoré poskytujú štruktúru a

prostredie pre vývoj softvéru.

1.2 Robot Jupiter

V tejto časti podrobnejšie popíšeme, z akých komponentov sa robot Jupiter skladá, aby sme

získali lepšiu predstavu, s čím pracujeme a čo všetko v našej práci využijeme.

Obrázok 1 robot Jupiter

1.2.1 Počítač

Robot Jupiter je vybavený výkonným počítačom s operačným systémom Linux. Distribúciou

operačného systému je Ubuntu 16.04 (v novších verziách robotov je to Ubuntu 18.04). Počítač

má procesor Intel Core i5-8259U, integrovanú grafiku od Intel-u. Úložný priestor predstavuje

disk SSD s kapacitou 120 GB a operačná pamäť má kapacitu 8 GB.

1.2.2 Dotykový displej

Robot Jupiter je takisto vybavený dotykovým displejom s Full HD rozlíšením, obnovovacou

frekvenciou 56-76MHz a HDMI vstupom.

1.2.3 LiDAR

Jedným zo senzorov, ktorými robot disponuje je 360 stupňový skener, ktorý využíva metódu

LiDAR – „light detection and ranging“ na snímanie okolia a meranie vzdialeností. Skener

vyžaruje svetlo vo forme lúča, ktoré dopadá na povrch objektu a odráža sa späť do prijímača.

Vzdialenosť povrchu objektu sa následne vypočíta pomocou času od vyslania lúča po čas jeho

návratu a rýchlosti lúča.

Základný vzorec na výpočet vzdialenosti objektu od skenera využívajúceho metódu

LiDAR:

Obrázok 2 Základný výpočet vzdialenosti, Obrázok prevzatý z [17]

Obrázok 3 LiDAR na robotovi Jupiter

1.2.4 ORBBEC ASTRA 3D kamera

Ide o RGBD kameru s aktívnym stereo videním založeným na zabudovanom IR projektore.

Táto kamera umožňuje využiť algoritmy počítačového videnia s viacerými funkciami, akými

sú rozpoznávanie tvárí, rozpoznávanie gest, sledovanie ľudského tela, trojdimenzionálne

meranie, vnímanie prostredia a trojdimenzionálna rekonštrukcia máp. Robot Jupiter obsahuje

dve takéto kamery, z ktorých jedna je umiestnená nad displejom a druhá pod LiDARom.

Tabuľka 1 Technické parametre kamery

1.2.5 Robotické rameno

Robot Jupiter je vybavený robotickým ramenom s piatimi stupňami voľnosti, konkrétne so

štyrmi bodmi otáčania v štyroch kĺboch a jedným chápadlom na uchopovanie a manipuláciu

objektov. Na otáčanie kĺbov slúžia 4 servomotory Dynamixel AX-18A s rozsahom otáčania 0

až 300 stupňov. Úplne vystreté rameno má dĺžku 33 centimetrov a je umiestnené v strede

robota.

1.2.6 Kobuki základňa

Kobuki je robotický podvozok, na ktorom je robot Jupiter postavený. Je to korytnačková

základňa s motorom, vysokovýkonnými batériami a množstvom rozhraní, cez ktoré sa dajú

následne pripojiť ďalšie periférne zariadenia alebo počítače, laptopy a iné. Na prístup ku

všetkým funkcionalitám Kobuki základne je potrebné mať pripojenú externú výpočtovú

jednotku ako počítač, laptop, tablet alebo vstavanú dosku so softvérom na komunikáciu

s Kobuki.

Kobuki základňa dosahuje maximálnu rýchlosť 70 cm/s, rýchlosť otáčania 180

stupňov/s. Maximálna nosnosť je 5 kg na podlahe a 4 kg na koberci. Očakávaný čas používania

je pri menšej verzii s menšou batériou 3 hodiny a 7 hodín pri verzii s väčšou batériou.

Očakávaný čas nabíjania menšej batérie je 1.5 hodiny a väčšej 2.6 hodiny.

Hardvér Kobuki obsahuje pripojenie k počítaču cez USB alebo RX/TX piny na

sériovom porte. Ďalej obsahuje detekciu preťaženia motora, gyroskop, ktorý je továrensky

kalibrovaný, nárazníky naľavo, v strede a napravo. Takisto sa na základni Kobuki nachádzajú

senzory detekciu schodov a senzor prepadnutia kolesa. Súčasťou základne sú aj dve

dvojfarebné programovateľné LEDky a niekoľko programovateľných sekvencií pípania.

Samozrejmosťou na základni Kobuki je aj lítium-iónová batéria s nominálnym napätím 14.8

V, veľkosťou 2200 mAh alebo 4400 mAh a nabíjací adaptér so vstupom 100-240 V AC,

frekvenciou 50/60 Hz, maximálnym prúdom 1.5 A a výstupom 19 V DC a prúdom 3.16 A [14].

Obrázok 4 Kobuki základňa pohľad zvrchu

Obrázok 5 Kobuki základňa pohľad zospodu

Obrázok 6 Kobuki základňa - ovládací panel

1.3 ROS – Robot Operating System

Robot Operating System je meta-operačný systém pre roboty. Obsahuje množstvo softvérových

knižníc a nástrojov, ktoré pomáhajú budovať robotické aplikácie. ROS je open source softvér.

Poskytuje služby, ktoré zahŕňajú abstrakciu hardvéru, nízkoúrovňové ovládanie zariadení,

implementáciu bežne používaných funkcionalít, posielanie správ medzi procesmi

a manažovanie balíčkov.

Beh ROS-u predstavuje graf peer-to-peer procesov siete, ktoré sú voľne poprepájané

pomocou komunikačnej infraštruktúry ROSu [15]. ROS implementuje niekoľko rôznych štýlov

komunikácie, ako napríklad synchrónne vzdialené volanie procedúr pomocou serviceov,

asynchrónny tok dát pomocou topicov a ukladanie dát na serveri s parametrami.

ROS momentálne funguje iba na unix platformách. Testovaný je hlavne na Ubuntu

a Mac OS X systémoch. Komunita však vytvára podporu aj pre Fedora, Gentoo, Arch Linux

a ostatné Linux platformy. Pre niektoré verzie ROSu existuje aj port na Microsoft Windows,

avšak jeho podpora je obmedzená.

1.3.1 Ciele ROS-u

Cieľom ROS-u nie je byť frameworkom s čo najväčším množstvom vlastností. ROS má za

hlavný cieľ podporovať opätovné použitie vytvoreného kódu na vývoj a výskum v oblasti

robotiky. ROS je distribuovaný framework procesov v podobe nodeov, ktoré umožňujú to, aby

bolo možné spustiteľné programy samostatne navrhnúť a počas behu programu ich voľne

prepájať. Tieto procesy je možné zhromaždiť do balíčkov, ktoré sa dajú následne jednoducho

distribuovať.

Okrem tohto hlavného cieľu má ROS aj niekoľko iných cieľov. ROS sa snaží byť čo

„najtenší“ – hlavná časť kódu v časti main() nie je zbytočne obaľovaná, aby bol kód písaný pre

ROS použiteľný aj v iných robotických frameworkoch. ROS je jednoducho integrovateľný

s ostatnými robotickými frameworkami ako sú OpenRAVE, Orocos alebo Player.

ROS podporuje nezávislosť programovacích jazykov. Dá sa jednoducho implementovať

v ktoromkoľvek modernom programovacom jazyku. ROS bol implementovaný v Pythone,

C++ a Lispe a existujú aj experimentálne knižnice pre Javu a Lua.

V ROSe je zabudovaný jednotkový a integračný testovací framework, ktorý sa volá

rostest a preto testovanie v ROS-e nepredstavuje veľký problém.

ROS je škálovateľný a preto je vhodný na veľké systémy a zložité vývojárske procesy.

1.3.2 Základné koncepty ROSu

Catkin je systém na budovanie balíčkov ROSu pre aplikácie a dá sa prirovnať napríklad

k CMake alebo GNU Make. Nakoľko aplikácie môžu mať rôzne Python alebo C++ súbory,

ROS vývojári sa rozhodli pre systém Catkin, ktorý pomerne dobre dokáže budovať balíčky

v rôznych jazykoch.

Aplikácie sa nachádzajú v priečinku catkin_ws t.j. Catkin Workspace. V tomto

priečinku je kód vyvíjaný, budovaný a testovaný. Na počítači môžeme mať viacero

„pracovných priestorov“ a nemusia sa volať catkin_ws. Vytvoriť si nový pracovný priestor je

vhodné pre každý nový samostatný a nezávislý projekt.

Kód samotný píšeme do jednotlivých ROS balíčkov, ktoré si vytvárame v našom

pracovnom priestore. Balíček je najmenšia samostatná časť aplikácie, ktorá sa dá vybudovať,

nainštalovať a spustiť. V balíčku sa nachádza zdrojový kód, skripty, CMakeLists súbory,

launch súbory, message súbory, service súbory a iné. Každý balíček by sa mal všeobecne

zameriavať na jednu časť aplikácie (autonómny pohyb, interakcia robota s človekom, atď.).

Jednou z najsilnejších vlastností ROSu je jeho modularita. Jednotlivé moduly bežia ako

samostatné procesy. V systéme ROS sa proces nazýva ROS node. Každá aplikácia je

vybudovaná z množstva nodeov. Komunikujú medzi sebou navzájom napríklad pomocou

publisherov a subscriberov, alebo poskytovaním a využívaním synchrónnych služieb a

štartovaním dlhodobejších akcií v architektúre klient/server.

Topic predstavuje v ROSe komunikačný kanál, umožňujúci výmenu informácií a dát

medzi jednotlivými nodeami bez toho, aby o sebe dané nodey niečo museli vedieť. Každý node

môže informácie na nejaký topic publikovať alebo informácie a dáta z neho odoberať. Toto

oddeľovanie komunikácie umožňuje vyvíjať a testovať každý node jednotlivo a teda budovať

modulárne a škálovateľné ROS systémy. Všetky topicy a nodey sa dajú vypísať pomocou

nástroja rosgraph alebo graficky vizualizovať pomocou jeho grafickej verzie rqt_graph pre

jednoduchšie ladenie a hľadanie chýb [16].

Message v systéme ROS predstavuje dátovú štruktúru, ktorá sa používa na posielanie

informácií a dát cez topicy medzi jednotlivými nodeami. Message je definovaný typom

messageu, ktorý je špecifikovaný v .msg súbore. Správy môžu obsahovať rôzne dátové typy

ako integer, string, boolean atď. ako aj polia [16].

Publisher v ROSe predstavuje typ nodeu, ktorý posiela dáta cez message na určitý topic.

Publisher vytvorí objekt message, naplní ho potrebnými dátami a následne ho publikuje na daný

topic. V správe sa bežne posielajú dáta zo senzorov, pokyny na ovládanie robota alebo

informácie o stave systému [16].

Subscriber je typ nodeu v ROSe, ktorý spracúva dáta z určitého topicu. ROS middleware

sa stará o prijímanie a posielanie messageov všetkým subscriberom, ktorí odoberajú daný topic.

Subscriber následne daný message už spracuje podľa potrieb [16].

Service je typ komunikácie medzi nodeami, ktorá umožňuje nejakému nodeu vyžiadať

určitú akciu od iného nodeu. Service je definovaný dvojicou messageov v jednom .srv súbore

– žiadosťou a odpoveďou. Žiadajúci node pošle žiadosť service nodeu, ktorý žiadosť spracuje

a pošle message s odpoveďou späť žiadateľovi. Service sa tak ako publisher a subscriber

využíva na ovládanie správania robota alebo vykonávanie špecifických akcií. Rozdielom je

však to, že zatiaľ čo komunikácia cez publishera, subscribera a topicy je asynchrónna, čiže

nečaká na spracovanie messageov, komunikácia cez service je synchrónna a žiadateľ čaká na

odpoveď predtým, než niečo vykoná [16].

Action server takisto ako service predstavuje komunikáciu medzi nodeami, ktorá má

umožniť nodeu požiadať o dlho bežiacu akciu od iného nodeu. Akcia je definovaná dvojicou

messageov, ktoré sú špecifikované v jednom .action súbore: požiadavka a spätná väzba.

Využíva sa napríklad na komplexné úlohy, akými sú pohyb robotického ramena na určité

miesto alebo vizuálne hľadanie objektov. Na rozdiel od service komunikácie, action server

posiela spätnú väzbu žiadajúcemu node-u aj počas toho, ako akcia prebieha. Vďaka tomu môže

žiadajúci node monitorovať progres akcie a robiť rozhodnutia na základe tejto spätnej väzby

[16].

1.3.3 Distribúcie ROSu

Distribúcia je set ROS balíčkov v nejakej verzii (Melodic, Noetic, Kinetic, Lunar) a pridružená

infraštruktúra ROSu. Distribúcie ROSu sú spravidla priradené jednotlivým distribúciám Linuxu

(Ubuntu). Účelom jednotlivých distribúcií je poskytnúť používateľom relatívne stabilný

a bezchybný zdrojový kód. Preto, pri portovaní aplikácie na novú distribúciu sú potrebné zmeny

a úpravy, bez ktorých aplikácia v novej verzii nebude automaticky fungovať. Keďže potreby

jednotlivých robotov sú rôzne, v budúcnosti sa očakáva, že časti komunity si budú vytvárať

vlastné distribúcie, ktoré budú vyhovovať ich využitiu.

1.3.4 ROS Kinetic

ROS Kinetic je distribúcia ROSu, ktorá je nainštalovaná na robotovi Jupiter. Táto distribúcia

vyšla dňa 23. mája 2016 a je desiata v poradí. Koniec podpory pre túto distribúciu bol

naplánovaný na apríl 2021. Kinetic je primárne zameraný na distribúciu Linuxu Ubuntu verzie

16.04 (Xenial), ale do istej miery podporuje aj Mac OS X, Android a Windows.

Novšia verzia softvérovej infraštruktúry robota Jupiter využíva ROS Melodic

asociovaný s Ubuntu 18, ale vzhľadom na to, že dodanom robotovi bola vyladená verzia

Kinetic, nepristúpili sme k upgrade s predpokladom, že následne rovno preskočíme na

v súčasnosti odporúčanú verziu Noetic, ale najskôr chceme preskúmať možnosti robota

v pôvodnej verzii.

1.3.5 ROS2

ROS2 je nová generácia pôvodného systému ROS, ktorá má oproti pôvodnému ROS-u

niekoľko vylepšení v oblasti komunikácie, bezpečnosti, flexibility použitia rôznych

programovacích jazykov a požiadaviek v reálnom čase. Je vytvorená s cieľom posunúť ROS

z výlučne akademického prostredia aj smerom k aplikáciám vo svete priemyslu.

Komunikačné protokoly v pôvodnom ROSe boli postavené na TCP alebo UDP

protokoloch. ROS2 používa DDS protokol, ktorý je viac flexibilný.

ROS nebol navrhnutý s ohľadom na požiadavky systémov v reálnom čase, zatiaľ čo

ROS2 obsahuje podporu systémov s požiadavkami na beh v reálnom čase, ako napríklad lepšiu

záruku doručenia správ.

ROS2 podporuje na rozdiel od starého ROS-u viac programovacích jazykov, ako

napríklad Python, C++, Java a ďalšie.

ROS2 obsahuje zabudované bezpečnostné vlastnosti, ako šifrovanie a overovanie pre

lepšiu ochranu pred bezpečnostnými hrozbami.

Štandardizácia rozhraní medzi komponentami má viac formalizovaný proces a tým sa

uľahčuje použitie komponentov tretích strán.

ROS2 však napriek všetkým jeho výhodám oproti pôvodnému systému ROS

nepoužívame, nakoľko robot Jupiter má ešte starý operačný systém, v ktorom je podporovaný

iba pôvodný ROS. Väčšina súčasných akademických systémov ešte len pomaly začína

prechádzať na ROS2 a preto v ňom ešte nie je dostatočná podpora a komunita.

1.3.6 TurtleBot Gazebo

Gazebo popri CoppeliaSim je jeden z dvoch najznámejších robotických simulátorov. Oba sú

dobre integrované so systémom ROS. TurtleBot Gazebo je 3D prostredie pre robotickú

platformu TurtleBot, ktoré je určené na simuláciu funkcií robota. TurtleBot je open-source,

nízko-nákladový mobilný a prispôsobiteľný robot postavený nad podvozkom Kobuki určený

na výskum, vzdelávanie a voľnočasové projekty.

V 3D prostredí Gazebo sa robot dokáže pohybovať, interagovať s objektami a vnímať

svoje okolie. Vývojári v tomto prostredí môžu testovať svoj kód a algoritmy predtým alebo bez

toho, aby ich nasadili na skutočného robota. TurtleBot Gazebo je veľmi dobrý nástroj na vývoj

a testovanie robotického softvéru a stal sa podstatnou súčasťou systému ROS.

1.3.7 RViz

RViz je nástroj slúžiaci na 3D vizualizáciu a je zároveň základnou súčasťou systému ROS.

Pomocou RViz sa dajú vytvárať a zobrazovať modely robotických komponentov v 3D

prostredí. Tento nástroj poskytuje aj grafické používateľské rozhranie na manipuláciu a

interakciu s týmito objektami. So systémom ROS pracuje tento nástroj bezproblémovo a

integrácia robotických modelov a dát zo senzorov do aplikácií je veľmi jednoduchá.

Medzi vlastnosti vizualizácie patria nástroje na zobrazenie mračien bodov, laserových

skenov a obrázkov z kamery, ako aj podpora na simuláciu kinematiky a dynamiky. Používatelia

si takisto môžu prispôsobiť vzhľad svojho robotického modelu. Zmeniť si vedia farbu, veľkosť

alebo priehľadnosť jednotlivých komponentov.

1.4 Ďalšie nástroje a knižnice

V tejto časti práce si popíšeme technológie, nástroje a knižnice, s ktorými sme pracovali a

využili sme ich v tejto bakalárskej práci. Budeme popisovať knižnice OpenCV, gTTS,

SpeechRecognition, Pygame, PIL, Numpy, TensorFlow, model neurónovej siete YOLOv3,

neurónovú sieť Darknet, USB akcelerátor Google Coral a počítač Raspberry Pi 4.

1.4.1 Python

Python je jednoduchý, no výkonný programovací jazyk, ktorý premosťuje priepasť medzi

programovaním v jazyku C a shell a preto je ideálny na „programovanie na jedno použitie“

a rýchle prototypovanie [1]. V Pythone je kladený dôraz na čitateľnosť kódu čistotou svojej

syntaxe a na definovanie blokov kódu sa v ňom používa odsadenie.

V oblasti strojového učenia sa rámce (framework) Pythonu ako TensorFlow a scikit-

learn stali populárnou voľbou pre vytváranie a tréning modelov [2].

 Python sa vo veľkej miere používa na stredných školách a vzhľadom na ciele tejto práce

je preto prirodzenou voľbou.

1.4.2 OpenCV

OpenCV (Open Source Computer Vision Library) je rozsiahlo používaná open source knižnica

na počítačové videnie a strojové učenie. OpenCV bol pôvodne vyvinutý spoločnosťou Intel a

neskôr podporovaný Willowom Garageom a Itseezom. Poskytuje rozsiahlu zbierku nástrojov,

algoritmov a funkcií pre rôzne úlohy týkajúce sa počítačového videnia [3].

Medzi nástroje na spracovanie obrazu alebo videa patria napríklad detekcia objektov,

rozpoznávanie, sledovanie objektov a segmentácia. Zdrojový kód OpenCV je napísaný

primárne v programovacom jazyku C++, vďaka čomu sú algoritmy dostatočne rýchle a

OpenCV poskytuje API aj pre programovacie jazyky Python, MATLAB, Java a ďalšie.

1.4.3 Numpy

NumPy (Numerical Python) je jednou zo základných a rozsiahlo používaných open-source

knižníc pre numerické výpočty v programovacom jazyku Python [4]. NumPy je nevyhnutným

stavebným kameňom pre vedecké výpočty a analýzu údajov, ponúka efektívne dátové

štruktúry, výkonné matematické funkcie a nástroje na prácu s poľami. Jeho hlavnou súčasťou

je objekt ndarray (N-rozmerné pole), ktorý umožňuje efektívne ukladanie a manipuláciu s

rozsiahlymi, homogénnymi dátovými súbormi.

Efektívne operácie s poľami a matematické funkcie, ktoré ponúka NumPy, výrazne

prispievajú k výkonu, škálovateľnosti a výpočtovej efektivite algoritmov strojového učenia.

Poskytuje potrebné nástroje na predspracovanie údajov, inžinierstvo funkcií a ohodnotenie

modelov, čo umožňuje odborníkom zostaviť a nasadiť efektívne systémy strojového učenia [4].

1.4.4 Pygame

Pygame je populárna knižnica pre Python, ktorá poskytuje robustný rámec pre tvorbu hier a

multimediálnych aplikácií. Obsahuje širokú paletu funkcií, ktoré umožňujú manipuláciu s

grafikou, zvukom a používateľskými vstupmi.

Pygame ponúka možnosti práce so zvukom a hudbou, čo umožňuje vývojárom začleniť

zvukové efekty a hudbu na pozadí do svojich hier. Modul mixéra poskytuje funkcie na načítanie

a prehrávanie rôznych zvukových formátov, ovládanie úrovní hlasitosti a implementáciu

zvukových efektov na zlepšenie herného zážitku [5].

1.4.5 SpeechRecognition

SpeechRecogntion knižnica v Pythone je výkonný nástroj, ktorý poskytuje integráciu

rozpoznávania reči do python projektov a interpretovať hovorené slovo do textovej formy.

SpeechRecognition podporuje viacero nástrojov na rozpoznávanie reči, vrátane Google

Speech Recognition, CMU Sphinx a Microsoft Azure Speech. Tieto prostriedky (engine)

využívajú algoritmy a techniky strojového učenia na konverziu hovoreného jazyka do textu.

Využitím týchto prostriedkov môžu vývojári prepisovať hovorené slovo, vykonávať hlasové

príkazy a umožniť hlasom ovládané interakcie vo svojich aplikáciách [6].

1.4.6 gTTS

Knižnica gTTS (Google Text-to-Speech) je Pythonovská knižnica, ktorá umožňuje vývojárom

jednoducho konvertovať text na reč pomocou rozhrania Google Text-to-Speech API. Poskytuje

pohodlný spôsob generovania hovoreného zvuku z textového obsahu [7].

1.4.7 YOLOv3

You only look once (YOLO) je najmodernejší systém detekcie objektov v reálnom čase. [8]

YOLOv3 stavia na svojich predchodcoch YOLO (You Only Look Once) a YOLOv2 a

prináša niekoľko vylepšení na zlepšenie schopností detekcie objektov. Volí jednorazový prístup

detekcie, kde je celý obraz spracovaný konvolučnou neurónovou sieťou (CNN), aby sa

simultánne predpovedali ohraničujúce výrezy a pravdepodobnosti tried pre viacero objektov

[8].

1.4.8 Darknet

Darknet je open source neurónová sieť napísaná v C a CUDA. Je rýchly, ľahko sa inštaluje a

podporuje výpočty CPU a GPU. [8] Slúži ako základný komponent pre rodinu algoritmov na

detekciu objektov YOLO (You Only Look Once), vrátane YOLOv3 [8]. Darknet poskytuje

platformu na trénovanie a nasadenie neurónových sietí pre rôzne úlohy počítačového videnia.

Vďaka svojej efektívnosti, rýchlosti a pomerne nenáročným hardvérovým požiadavkám je

Darknet dobrou voľbou pre aplikácie, ktoré vyžadujú detekciu a rozpoznávanie objektov

v reálnom čase.

1.4.9 Raspberry Pi 4

Raspberry Pi 4 je počítač s jednou doskou vyvinutý nadáciou Raspberry Pi Foundation. Ide o

štvrtú generáciu zo série Raspberry Pi, ktorá ponúka vylepšený výkon, rozšírenú konektivitu a

možnosti [11].

Raspberry Pi 4 obsahuje výkonný štvorjadrový procesor ARM Cortex-A72

s frekvenciou až 1.5 GHz a pamäť RAM o veľkostiach 2GB, 4GB a 8GB. Štvrtá generácia

Raspberry Pi podporuje 4K video výstup na pripojenie dvoch monitorov naraz. Raspberry Pi 4

takisto obsahuje USB 3.0 port na rýchlejší presun dát a USB2.0 port na pripojenie periférnych

zariadení a gigabitový eternetový port na vysokorýchlostné sieťové pripojenie. Ďalej má

zabudované bezdrôtové pripojenie Wi-Fi a Bluetooth na pripojenie bezdrôtových periférií.

1.4.10 TensorFlow

TensorFlow je open source systém na strojové učenie, vyvinutý spoločnosťou Google Brain.

Poskytuje komplexný ekosystém nástrojov, knižníc a prostriedkov na vytváranie a

nasadzovanie modelov strojového učenia [12].

Jednou z kľúčových vlastností TensorFlow je grafová abstrakcia výpočtov, ktorá

používateľom umožňuje definovať a vykonávať zložité matematické operácie vo forme

výpočtového grafu. Tento prístup umožňuje efektívne spúšťanie na rôznych hardvérových

platformách vrátane CPU, GPU a dokonca aj na špecializovaných akcelerátorov, ako sú TPU

(Tensor Processing Unit).

1.4.11 Google Coral USB Accelerator

Google Coral USB Accelerator je hardvérové zariadenie, určené na zrýchlenie úloh strojového

učenia. Je špeciálne optimalizovaný pre efektívne a rýchle spúšťanie modelov neurónových

sietí [13].

Coral USB Accelerator obsahuje Edge TPU (Tensor Processing Unit), čo je na mieru

navrhnutý ASIC (Application-Specific Integrated Circuit), vyvinutý spoločnosťou Google.

Edge TPU poskytuje vysokovýkonnú inferenciu strojového učenia s nízkou spotrebou energie,

vďaka čomu je vhodný pre rôzne výpočtové zariadenia vrátane Raspberry Pi.

Hlavná myšlienka činnosti tohto zariadenia spočíva v tom, že namiesto toho, aby

výpočet prebiehal na klasickom von-Neumannovskom CPU, alebo na množine takýchto

procesorov zoradených do GPU, výpočtová architektúra je vysoko paralelizovaná, obsahuje

množstvo veľmi jednoduchých, efektívne prepojených malých samostatných výpočtových

jednotiek, ktoré dokážu vykonávať desaťtisíce až stotisíce operácií súčasne – čo presne

zodpovedá potrebám hlbokých neurónových sietí.

K počítaču sa pripojí cez USB 3.0 port a poskytuje podporu pre úlohy, akými sú

rozpoznávanie objektov, počítačové videnie alebo rozpoznávanie reči. Dá sa použiť s viacerými

populárnymi rámcami ako TensorFlow a PyTorch a podporuje programovacie jazyky Python

a C++. Výhodou Google Coral je, že je to malé prenosné „pripoj a hraj“ zariadenie, ktoré si

nevyžaduje výrazné zmeny hardvéru na to, aby sme ho mohli začať používať.

1.5 Robocup@Home Education

Robocup At Home Education je edukačná iniciatíva na podporu vývoja servisných robotov,

zameraných na umelú inteligenciu a na zvýšenie záujmu o zapojenie sa do tejto iniciatívy.

V rámci iniciatívy bežia štyri programy, a to RoboCup@Home Education Challenge,

Open Source Educational Robot Platforms, OpenCourseWare a Outreach Programs.

Robocup@Home Education Challenge je edukačná súťažná platforma, ktorá slúži na

podporu začiatočníckych tímov v súťažiach Robocup@Home Challenges. Súťaže fungujú na

princípe workshopu spojeného so samotnou súťažou, kde majú účastníci za úlohu vypracovať

a naprogramovať náročnejšie zadania, zamerané na vývoj robota a umelú inteligenciu v rámci

istého časového limitu. Súťaže sú usporadúvané v rámci Robocup komunity na medzinárodnej

alebo miestnej úrovni.

1.5.1 Pravidlá Robocup@Home Education Challenge

Pravidlá pre Robocup@Home Education Challenge sú veľmi podobné pravidlám opísaným

v oficiálnej knihe pravidiel pre RoboCup@Home [18] v snahe dodržať isté štandardy.

Jednotlivé úlohy sú však prispôsobené pre tímy nováčikov za účelom vzdelávania v tejto

oblasti.

Tímy môžu súťažiť s dvomi typmi robotov, a to Open Platform a Standard Platform.

Tímy v kategórii Open Platform používajú vlastnoručne zloženého robota, napríklad robota

Jupiter. Standard Platform tímy používajú štandardizovanú robotickú platformu robota Pepper

od SoftBank Robotics. Standard Platform kategória je viac zameraná na softvérový dizajn.

V súťaži máme dve hlavné kategórie súťažiacich podľa veku a to Open kategória pre

účastníkov v akomkoľvek veku a kategória Junior pre účastníkov mladších ako 19 rokov.

Na kvalifikáciu do medzinárodnej súťaže musia súťažné tímy poslať isté kvalifikačné

materiály, akými sú dokument s popisom tímu a video o tíme. Tím by takisto mal mať

preukázateľné technické zdatnosti alebo skúsenosti, mal by pozostávať hlavne z nováčikov

a pokiaľ má tím vlastného robota, ten by mal byť v podobnej cenovej relácii ako roboty

poskytované súťažou.

Jednotlivé úlohy sa rozdeľujú do troch kategórií a to na navigačné úlohy, úlohy

zamerané na robotické videnie a rečové úlohy. Pri manipulačných úlohách pre Open Platform

robotov bude objekt umiestnený v dosahu robota podľa jeho výšky.

Súčasťou súťaže je aj príprava tímového plagátu vo formáte A1, ktorý bližšie predstaví

technický vývoj tímu. Na konci workshopu jednotlivé tímy ešte pred začiatkom súťaže

odprezentujú svoje plagáty.

Body sú udeľované postupne za každý podcieľ, ktorý robot splní, na rozdiel od

Robocup@Home, pri ktorom sa boduje finálny cieľ úlohy. Čiastkové ohodnotenie úloh má

pomôcť tímom začiatočníkov, pre ktorých môže byť náročnejšie splniť komplexnejšie zadané

úlohy.

Pravidlo preskočenia umožňuje tímom preskočiť zložitejšiu časť zadania, resp. podcieľ

a riešiť nasledovný podcieľ. Tímy sa majú pokúsiť splniť zadanie aspoň čiastočne, aj keď iná

časť ich programu nefunguje, napr. vyriešiť rozpoznávanie objektu napriek tomu, že nefunguje

navigácia. Tímy nemôžu opakovať podcieľ, ktorý preskočili, ale musia riešiť nasledujúci

podcieľ.

Pravidlo zjednodušenia má motivovať tímy, aby zložitejšie podciele nepreskakovali

predchádzajúcim pravidlom, ale pokúsili sa vyriešiť ich zjednodušenú verziu za bodovú

penalizáciu. Napríklad pri rozpoznávaní objektov bude robot rozpoznávať tímom vybraný

objekt namiesto objektu, ktorý by určila porota. Tím musí pred prezentáciou riešenia oznámiť,

že chce využiť toto pravidlo.

Prezentácia výsledkov a finálnych úloh prebieha nasledovne: Každý tím ma na prípravu,

prezentáciu a demonštráciu vypracovaného zadania desať minút. Po prezentácii nasleduje päť

minút, počas ktorých sa porota pýta tímu otázky. Tím musí počas rozhovoru dať veci v prostredí

prezentácie do pôvodného stavu.

1.5.2 Implikácie vyplývajúce z pravidiel

Z pravidiel a typov úloh popísaných vyššie vieme vyvodiť nejaké implikácie a závery toho, čo

by mal robot zvládať, aby tím mohol potenciálne uspieť v plnení úloh súťaže Robocup@Home

Education Challenge. Typy úloh v súťaži sú zamerané na navigáciu robota, robotické videnie,

rozpoznávanie objektov a rečové schopnosti robota.

Z toho vyplýva, že robot by mal zvládať autonómnu navigáciu po zmapovanej

miestnosti s vyhýbaním sa prekážkam. Ďalej by mal byť schopný rozpoznávať každodenné

objekty, nájsť ich v priestore a manipulovať nimi pomocou robotického ramena. Takisto by mal

byť schopný pomocou mikrofónu a reproduktorov komunikovať s človekom.

