
Preklad optimaliza£ných metód z jazyka Matlab do jazyka

Python

Patrik Grman

25.6.2020

Problém

Na katedre aplikovanej matematiky a ²tatistiky sa pri výu£be predmetu Metódy vo©nej optimali-
zácie na praktické ukáºky pouºíva jazyk Matlab. Ukazuje sa ale, ºe je vhodné pouºi´ rad²ej nie£o
vo©ne dostupné, £o napríklad umoºní ²tudentom ©ah²ie experimentova´ na vlastných po£íta£och.
Za týmto ú£elom vznikla poºiadavka preloºi´ existujúci kód do jazyka Python verzie 3, ke¤ºe
verzia 2 je EOL od za£iatku roka 2020.

Zimný semester

Najprv bolo treba zisti´, £i nejdeme rie²i´ uº vyrie²ený problém. Ukázalo sa ale, ºe ve©a nástrojov
robí s Pythonom 2, a £asto Matlab skôr emulujú ako prekladajú. Bolo teda treba zisti´ £o a ako
sa má preloºi´, aby to fungovalo pod Python verziou 3.

�as´ 1: Zistenie mnoºiny pouºívanej funkcionality

V prvej fáze som sa zameral na existujúci kód. Potreboval som zisti´, aká funkcionalita sa reálne
pouºíva, aby som vedel £o treba preloºi´. Bolo nájdených okolo 30 rôznych relevantných vecí v
nieko©kých kategóriách, napríklad syntax a vstavané funkcie. V²etky zistenia boli zapísané do
súboru pre neskor²ie pouºitie.

�as´ 2: Nájdenie ekvivalentov pre jazyk Python

Následne bolo nutné nájs´ pythonovské ekvivalenty k veciam najdeným v prvej £asti. Niektoré
funkcie bu¤ priamo existujú alebo sú ©ahko emulovate©né v základnom Pythone.

Na ve©a pokro£ilých matematickych operacií som zvolil kniºnicu numpy, ktorá je de-facto
²tandardom pre náro£nej²iu matematiku v Pythone. Na vykres©ovanie grafov bola zvolená kniºnica
matplotlib, ktorej modul pyplot má rozhranie ve©mi podobné matlabovým grafovým funkciám, £o
umoºnilo relatívne jednoduchú adaptáciu.

Samozrejme ani jedna kniºnica neposkytuje funkcinalitu úplne identickú matlabovskému ek-
vivalentu, ale skombinovaním malého po£tu funkcií sa vºdy dala emulova´.

Letný semester

V letnom semestri bolo treba sformalizova´ ako sa má robi´ preklad samotný, a pod©a moºnosti
aj preloºi´ £o treba.

1

�as´ 3: Spísanie manuálu pre ru£ný preklad

Na základe znalostí oboch jazykov a pouºitim vedomostí z druhej £asti som napísal manuál pre
ru£ný preklad. Manuál je napísaný v jednoduchom jazyku Markdown, a automaticky je z neho
generovaná pdf verzia.

Následne som ho priebeºne upravoval a vylep²oval, ke¤ sa po£as práce na nasledúcich £astiach
ukázali niektoré dovtedy nespozorované skuto£nosti.

�as´ 4: Automatizácia prekladu

Uº od za£iatku bolo pomerne jasné, ºe preklad pouºitím £iste regulárnych jazykových prostriedkov,
prípadne vlastného zloºitej²ieho mechanizmu by bol problematický a výrazne náchylný na chyby.
Preto som sa rozhodol pouºi´ niektorú vo©ne dostupnú technológiu na parsovanie bezkontextových
jazykov.

Konkrétne som pouºil nástroj ANTLR, ktorý na základe formálne de�novanej gramatiky vy-
generuje kód ktorý realizuje samotné parsovanie. �al²ia výhoda pouºitia existujúceho nástroja
bola moºnos´ pouºi´ predpripravenú gramatiku pre Matlab, ur£enú pre tento nástroj, aj ked sa
nakoniec ukázala potreba gramatiku opakovane upravova´ a roz²irova´, vzh©adom na chábajúcu
funkcionalitu.

Na generovanie výstupu som zvolil kniºnicu StringTemplate, ktorá umoº¬uje ve©mi pohodlné
generovanie Pythonového kódu vrátane interného rie²enia odsadenia.

Na preklad samotný som s výhodou pouºil návrhový vzor visitor, ke¤ºe parser generuje zako-
renený strom reprezentujúici program rozdelený pod©a pravidiel gramatiky.

Preklada£ implementuje len nutné minimum funkcionality, ke¤ºe som nechcel rie²i´ neexistu-
júci problém. Je schopný preklada´ bu¤ jednotlivé súbory alebo (nerekurzívne) prie£inky. Nástroj
má momentálne len rozhranie pouºite©né z príkazového riadku, na vytvorenie uºivatelskeho roz-
hrania som vyuºil kniºnicu Apache Commons CLI.

�as´ 5: Testovanie rýchlosti behu

Následne som pre zaujímavos´ realizoval meranie na porovnanie rýchlosti vykonávania týchto
dvoch jazykov. Oba jazyky su interpretované, preto ide v skuto£nosti o porovnanie rýchlosti im-
plementacií interpretera, prípadne kniºni£ného kódu, ktorý napríklad numpy realizuje ako natívny
kód.

Konkrétne som zvolil implementácie, ktoré su zadarmo verejne dostupné a ²tandardne sa po-
uºívaj, teda pre Python je to CPython a pre Matlab je to GNU Octave.

Rýchlos´ sa testovala vo viacerých disciplínach:

• Jednoduchý cyklus, ktorý s£ítaval £ísla od 0 po n - na ¬om sa ukáºe ako rýchlo beºí interpreter
pre jednoduché operácie

• Rekurzívny výpo£et n-tého £ísla Fibonacciho postupnosti - ukazuje výkon pri volaní funkcií

• Násobenie ²tvorcových matíc v cykle neefektívne po£ítajúc n-tú mocninu matice - rýchlos´
matematického kódu

Kódy pre Matlab

% disciplina 1

function total= mark0(n)

total=0;

for i=0:n

total=total+i;

end

end

% disciplina 2

function x = mark1(n)

if(n <= 1)

x=1;

else

x=mark1(n-1)+mark1(n-2);

end

end

% disciplina 3

function result=mark2(mat,n)

result=mat;

for i=0:n

result=result*mat;

end

end

Kódy pre Python

Kód bol preloºený automatickým preklada£om a následne odstránené v tomto prípade nepotrebné
zátvorky a vo©né riadky

disciplina 1

def mark0(n):

total = 0

for i in range(0, n + 1):

total = total + i

return total

disciplina 2

def mark1(n):

if n <= 1:

x = 1

else:

x = mark1(n - 1) + mark1(n - 2)

return x

disciplina 3

def mark2(mat, n):

result = mat

for i in range(0 , n + 1):

result = result * mat

return result

Postup testovania

Postup pre oba jazyky bol rovnaký: pouºitím interných hodiniek sa odmeralo trvanie 10 spustení
jedneho testu pre daný argument a vypo£ítala sa priemerná doba jedného spustenia. Ak táto doba

prekro£ila 1 minútu, test pre danú disciplínu kon£í, inak sa zvy²uje argument.
Konkrétne pre disciplíny 1 a 3 sa argument vynásobi 10, pri£om obe sú lineárne náro£né

úlohy, takºe sa o£akáva asi 10x dlh²ie trvanie, pre disciplínu 2 sa argument zvý²i o 2, ke¤ºe ide o
exponenciálne náro£ný výpo£et je o£akávaný asi 2,5x dlh²í £as.

Oba testy boli spustené ako jediný pouºívate©ský program na virtuálnom stroji obmedzenom
na jedno jadro (plne vyuºité po£as v²etkých testov), pri£om na fyzickom stroji po£as testu ni£ iné
spustené nebolo.

Výsledky

V²etky £asy sú v milisekundách.

Tabu©ka 1: Disciplína 1

Parameter Matlab Python

1 1 0
10 0 0
100 0 0
1000 3 0
10000 31 2
100000 318 24
1000000 3233 244
10000000 31301 2379
100000000 310641 23738
1000000000 - 238677

Tabu©ka 2: Disciplína 2

Parameter Matlab Python

10 9 0
12 14 0
14 36 1
16 94 1
18 247 4
20 651 9
22 1723 25
24 4505 65
26 11838 170
28 31060 440
30 81188 1165
32 - 3059
34 - 7933
36 - 21011
38 - 54460
40 - 142842

Tabu©ka 3: Disciplína 3

Parameter Matlab Python

1 9 0
10 0 1
100 1 8
1000 9 84
10000 86 850
100000 848 8548
1000000 8584 85360
10000000 84613 -

Z dát je pomerne jasne vidie´, ºe kaºdá implementácia je dobrá v nie£om inom. Kým rozdiely
pri prvej úlohe su relatívne malé, pri druhej sa Python dostal výrazne ¤alej, a pre zmenu v tretej
zasa dominoval Matlab.

