Preklad optimalizacnych metod z jazyka Matlab do jazyka
Python

Patrik Grman
25.6.2020

Problém

Na katedre aplikovanej matematiky a Statistiky sa pri vyuc¢be predmetu Metddy volnej optimali-
zacie na praktické ukazky pouziva jazyk Matlab. Ukazuje sa ale, ze je vhodné pouzit radsej nieco
volne dostupné, ¢o napriklad umozni Studentom lahsie experimentovat na vlastnych pocitacoch.
Za tymto tucelom vznikla poziadavka prelozit existujuci kod do jazyka Python verzie 3, kedZe
verzia 2 je EOL od zaciatku roka 2020.

Zimny semester

Najprv bolo treba zistit, ¢ nejdeme riesit uz vyrieSeny problém. Ukazalo sa ale, Ze vela néstrojov
robi s Pythonom 2, a ¢asto Matlab skor emuluji ako prekladaja. Bolo teda treba zistit ¢o a ako
sa ma prelozit, aby to fungovalo pod Python verziou 3.

Cast 1: Zistenie mnoziny pouZivanej funkcionality

V prvej faze som sa zameral na existujici kod. Potreboval som zistit, akd funkcionalita sa realne
pouziva, aby som vedel ¢o treba prelozit. Bolo najdenych okolo 30 roznych relevantnych veci v
niekol’kych kategoriach, napriklad syntax a vstavané funkcie. VSetky zistenia boli zapisané do
stiboru pre neskorSie pouzitie.

Cast 2: Najdenie ekvivalentov pre jazyk Python

Nasledne bolo nutné najst pythonovské ekvivalenty k veciam najdenym v prvej ¢asti. Niektoré
funkcie bud priamo existuju alebo st I'ahko emulovatelné v zdkladnom Pythone.

Na vela pokrocilych matematickych operacii som zvolil kniZznicu numpy, ktord je de-facto
Standardom pre naro¢nej$iu matematiku v Pythone. Na vykresTovanie grafov bola zvolena kniznica
matplotlib, ktorej modul pyplot mé rozhranie velmi podobné matlabovym grafovym funkciam, ¢o
umoznilo relativne jednoduchi adaptaciu.

Samozrejme ani jedna kniznica neposkytuje funkcinalitu dplne identickd matlabovskému ek-
vivalentu, ale skombinovanim malého poc¢tu funkcii sa vzdy dala emulovat.

Letny semester

V letnom semestri bolo treba sformalizovat ako sa ma robit preklad samotny, a podla moZnosti
aj prelozit ¢o treba.

Cast 3: Spisanie manualu pre ru¢ny preklad

Na zéklade znalosti oboch jazykov a pouzitim vedomosti z druhej ¢asti som napisal manual pre
ruc¢ny preklad. Manual je napisany v jednoduchom jazyku Markdown, a automaticky je z neho
generovand pdf verzia.

Nasledne som ho priebeZne upravoval a vylepSoval, ked sa poc¢as prace na nasleducich ¢astiach
ukazali niektoré dovtedy nespozorované skutocnosti.

Cast 4: Automatizacia prekladu

Uz od zac¢iatku bolo pomerne jasné, ze preklad pouzitim ciste regularnych jazykovych prostriedkov,
pripadne vlastného zlozitejsicho mechanizmu by bol problematicky a vyrazne nachylny na chyby.
Preto som sa rozhodol pouzit niektori volne dostupni technolégiu na parsovanie bezkontextovych
jazykov.

Konkrétne som pouzil nastroj ANTLR, ktory na zaklade formalne definovanej gramatiky vy-
generuje kod ktory realizuje samotné parsovanie. Dalsia vyhoda pouzitia existujiceho néstroja
bola moznost pouzit predpripraventi gramatiku pre Matlab, uréent pre tento nastroj, aj ked sa
nakoniec ukéazala potreba gramatiku opakovane upravovat a rozsirovat, vzhladom na chabajicu
funkcionalitu.

Na generovanie vystupu som zvolil kniznicu StringTemplate, ktora umoziuje velmi pohodlné
generovanie Pythonového kodu vratane interného riesenia odsadenia.

Na preklad samotny som s vyhodou pouZil navrhovy vzor visitor, kedZe parser generuje zako-
reneny strom reprezentujuici program rozdeleny podla pravidiel gramatiky.

Preklada¢ implementuje len nutné minimum funkcionality, kedZe som nechcel riesit neexistu-
juci problém. Je schopny prekladat bud jednotlivé sibory alebo (nerekurzivne) prie¢inky. Nastroj
ma momentalne len rozhranie pouzitelné z prikazového riadku, na vytvorenie uzivatelskeho roz-
hrania som vyuzil kniznicu Apache Commons CLI.

Cast 5: Testovanie rychlosti behu

Néasledne som pre zaujimavost realizoval meranie na porovnanie rychlosti vykonavania tychto
dvoch jazykov. Oba jazyky su interpretované, preto ide v skuto¢nosti o porovnanie rychlosti im-
plementacii interpretera, pripadne knizni¢ného koédu, ktory napriklad numpy realizuje ako nativny
kod.

Konkrétne som zvolil implementécie, ktoré su zadarmo verejne dostupné a Standardne sa po-
uzivaj, teda pre Python je to CPython a pre Matlab je to GNU Octave.

Rychlost sa testovala vo viacerych disciplinach:

e Jednoduchy cyklus, ktory s¢itaval ¢isla od 0 po n - na iom sa ukaze ako rychlo bezi interpreter
pre jednoduché operécie

e Rekurzivny vypocet n-tého ¢isla Fibonacciho postupnosti - ukazuje vykon pri volani funkcii

e Nisobenie Stvorcovych matic v cykle neefektivne pocitajic n-td mocninu matice - rychlost
matematického kdédu

Kédy pre Matlab

% disciplina 1
function total= mark0O(n)
total=0;
for i=0:n
total=total+i;

end
end

% disciplina 2
function x = markl(n)

if(n <= 1)
x=1;
else
x=markl(n-1)+markl(n-2);
end
end

% disciplina 3
function result=mark2(mat,n)
result=mat;
for i=0:n
result=result*mat;
end
end

Ké6dy pre Python

Kod bol prelozeny automatickym prekladacom a nasledne odstranené v tomto pripade nepotrebné
zatvorky a volné riadky

disciplina 1
def markO(n):
total = 0
for i in range(0, n + 1):
total = total + i
return total

disciplina 2
def marki(n):
if n <= 1:
x =1
else:
x = marki(n - 1) + marki(n - 2)
return x

disciplina 3
def mark2(mat, n):
result = mat
for i in range(0 , n + 1):
result = result * mat
return result

Postup testovania

Postup pre oba jazyky bol rovnaky: pouzitim internych hodiniek sa odmeralo trvanie 10 spusteni
jedneho testu pre dany argument a vypocitala sa priemerna doba jedného spustenia. Ak tato doba

prekrocila 1 minttu, test pre danid disciplinu konci, inak sa zvySuje argument.

Konkrétne pre discipliny 1 a 3 sa argument vynasobi 10, pricom obe si linedrne néroc¢né
ulohy, takZe sa ocakava asi 10x dlhsie trvanie, pre disciplinu 2 sa argument zvysi o 2, kedZe ide o
exponencidlne naro¢ny vypocet je ocakavany asi 2,5x dlhsi ¢as.

Oba testy boli spustené ako jediny pouzivatelsky program na virtualnom stroji obmedzenom
na jedno jadro (plne vyuzité pocas vietkych testov), pri¢om na fyzickom stroji pocas testu ni¢ iné
spustené nebolo.

Vysledky
Vsetky casy su v milisekundach.

Tabulka 1: Disciplina 1

Parameter Matlab Python

1 1 0
10 0 0
100 0 0
1000 3 0
10000 31 2
100000 318 24

1000000 3233 244
10000000 31301 2379
100000000 310641 23738
1000000000 - 238677

Tabulka 2: Disciplina 2

Parameter Matlab Python

10 9 0

12 14 0

14 36 1

16 94 1

18 247 4

20 651 9

22 1723 25

24 4505 65

26 11838 170
28 31060 440
30 81188 1165
32 - 3059
34 - 7933
36 - 21011
38 - 54460
40 - 142842

Tabulka 3: Disciplina 3

Parameter Matlab Python

1 9 0
10 0 1
100 1 8
1000 9 84
10000 86 850

100000 848 8548
1000000 8584 85360
10000000 84613 -

7 dat je pomerne jasne vidiet, ze kazda implementacia je dobra v nieCom inom. Kym rozdiely
pri prvej ulohe su relativne malé, pri druhej sa Python dostal vyrazne dalej, a pre zmenu v tretej
zasa dominoval Matlab.

