
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Využitie UI v procese výuky
programovania

Diplomová práca

2026
Bc. Samuel Ješík

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Využitie UI v procese výuky
programovania

Diplomová práca

Študijný program: Aplikovaná informatika
Študijný odbor: Informatika
Školiace pracovisko: Katedra aplikovanej informatiky
Školiteľ: RNDr. Andrej Blaho, PhD.

Bratislava, 2026
Bc. Samuel Ješík

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Samuel Ješík
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: slovenský
Sekundárny jazyk: anglický

Názov: Využitie UI v procese výuky programovania
Using AI in the process of teaching programming

Anotácia: V súčasnosti je už temer isté, že UI asistenti (chatGPT, Copilot a pod.) sa budú
spolupodieľať na písaní programov. Študenti ich používajú a je temer nemožné
im to zakazovať. Naopak, bolo by žiadúce, aby tieto pomôcky využívali
správne, aby im pomáhali, asistovali im, ale nevykonávali ich prácu v škole
za nich. Je nevyhnutné, aby sa študenti naučili sami programovať, pretože
inak nebudú schopní porozumieť programom, kontrolovať ich správnosť,
refaktorovať ich, písať testy, ako aj rozširovať ich a pristupovať k nim ako
k zdedenému kódu.

Cieľ: 1. Zmapovať UI asistentov, vyskúšať rôznych na rovnakých úlohách a porovnať
ich schopnosti, kvalitu a použiteľnosť vo výuke. Príp. analyzovať, čo študenti
u nás používajú.
2. Vytvoriť praktické, výukové web prostredie, v ktorom by študenti mohli
pracovať vo viacerých jazykoch (Python, C++, Java) spolu s UI na rôznych
typoch úloh (sami, alebo s pomocou UI): písanie kódu, tvorba testov,
refaktorizácia, rozširovanie zdedeného kódu a pod.
3. Vytvoriť katalóg vhodných úloh pre študentov, na ktorých by si prakticky
vyskúšali programovanie s UI, napr. odhaľovanie chýb v kóde vytvorenom
UI, využitie UI na písanie testov na vlastný chybový kód, refaktorizácia,
modifikovanie a rozširovanie kódu vytvoreného UI a pod.

Vedúci: RNDr. Andrej Blaho, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
prípustná pre vlastnú VŠ

Dátum zadania: 11.12.2024

Dátum schválenia: 11.12.2024 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

Poďakovanie

XXXXX.

iii

Abstrakt

Táto diplomová práca sa zaoberá využitím UI asistentov (ako ChatGPT) v procese vý-
učby programovania na Fakulte matematiky, fyziky a informatiky UK. Cieľom práce
je preskúmať, aký vplyv majú tieto nástroje na správanie študentov, kvalitu kódu a
vnímanie AI asistencie pri písaní programov. Práca tiež bude skúmať, aké nástroje sú
študentmi využívané na fakulte a porovnáva schopnosti rôznych UI asistentov na iden-
tických programovacích úlohách. Spolu s týmito zisteniami bude vytvorené praktické
webové prostredie, ktoré umožní študentom riešiť úlohy sami alebo s podporou AI asis-
tenta, pričom sa zameria na písanie kódu, tvorbu testov, refaktorizáciu a rozširovanie
zdedeného kódu. Výsledky práce môžu pomôcť pri optimalizácii vyučovacieho procesu
a pri správnej implementácii AI nástrojov do vzdelávacieho systému.

Kľúčové slová: UI asistenti, ChatGPT, výučba programovania, umelá inteligencia,
webové prostredie, refaktorizácia kódu

iv

Abstract

This thesis focuses on the use of UI assistants (such as ChatGPT) in the process of tea-
ching programming at the Faculty of Mathematics, Physics and Informatics, Comenius
University. The main goal of the work is to examine the impact these tools have on
students’ behavior, code quality, and perceptions of AI assistance in programming. The
thesis will also investigates which tools are currently used by students at the faculty
and compares the capabilities of different UI assistants on identical programming tasks.
Together with these findings, a practical web environment will be created, allowing stu-
dents to solve tasks independently or with the support of an AI assistant, focusing on
code writing, test creation, refactoring, and expanding legacy code. The results of the
thesis may help optimize the teaching process and the proper implementation of AI
tools in the educational system.

Keywords: UI assistants, ChatGPT, , programming education, artificial intelligence,
web environment, code refactoring

v

vi

Obsah

Úvod 1

1 Východiská práce 3
1.1 Transformácia výučby programovania v ére AI 3

1.1.1 Už nejde len o syntax, ale o architektúru 3
1.1.2 Menej zbytočnej záťaže pre mozog 4
1.1.3 Pozor na ilúziu, že všetko viem 4
1.1.4 Nové kľúčové zručnosti . 4

1.2 Prehľad a taxonómia AI asistentov pre programovanie 5
1.2.1 Konverzačné modely (Chatbots) 5
1.2.2 Asistenti priamo v editore (AI-Powered IDEs) 7
1.2.3 Lokálne modely (Open Weights) 8

1.3 Riziká a limitácie integrácie AI vo výučbe 9
1.3.1 Technické limity: Halucinácie a spoľahlivosť 9
1.3.2 Pedagogické riziká: Kognitívna atrofia a lenivosť 10

1.4 Nové didaktické scenáre . 10
1.4.1 Hľadanie chýb po AI (Reverse Debugging) 10
1.4.2 Písanie testov pre čiernu skrinku (Black-box Testing) 10
1.4.3 Upratovanie a refaktorizácia (Refactoring) 11

1.5 Analýza existujúcich platforiem a potreba vlastného riešenia 11
1.5.1 Prečo nestačia súťažné platformy 11
1.5.2 Prečo potrebujeme vlastné riešenie 12

1.6 Etické a bezpečnostné aspekty AI vo vývoji softvéru 12
1.6.1 Hackovanie modelu (Prompt Injection) 12
1.6.2 Ochrana duševného vlastníctva a únik dát 13

1.7 Pedagogické ukotvenie: Bloomova taxonómia v ére AI 13

2 Analýza a návrh riešenia 15
2.1 Čo od toho vlastne chceme (Požiadavky na systém) 15

2.1.1 Funkcionálne požiadavky . 15
2.1.2 Nefunkcionálne požiadavky . 16

vii

2.2 Architektúra systému . 16
2.2.1 Ako to vyzerá zhora (High-level prehľad) 16
2.2.2 Použité technológie . 16

2.3 Návrh dátového modelu . 18
2.3.1 ER diagram databázy . 18
2.3.2 Polymorfizmus pri podpore jazykov 18

2.4 Návrh bezpečného spúšťania kódu (Sandbox) 18
2.4.1 Izolácia pomocou kontajnerov 18
2.4.2 Riešenie kompilácie pre C++ a Javu 18

2.5 Návrh integrácie AI . 18
2.5.1 Komunikácia s Ollama API . 18
2.5.2 Automatizované generovanie zadaní 18
2.5.3 Prompt Engineering . 19

3 Implementácia 21
3.1 Príprava vývojového prostredia . 21
3.2 Backend a aplikačná logika . 21

3.2.1 Správa používateľov a autentifikácia 21
3.2.2 Manažment úloh a nahrávanie riešení 21

3.3 Realizácia bezpečného spúšťania (Docker Orchestration) 21
3.3.1 Tvorba Docker image . 21
3.3.2 Implementácia funkcie pre spustenie kódu 21
3.3.3 Spracovanie výstupov a chýb . 21

3.4 Implementácia AI modulu . 21
3.4.1 Generovanie zadaní a parsovanie výstupov 21
3.4.2 Chatovací asistent . 21

3.5 Používateľské rozhranie (Frontend) . 21
3.5.1 Editor kódu . 21
3.5.2 Vizualizácia spätnej väzby a testov 21

4 Výskum 23
4.1 Metodika výskumu . 23

4.1.1 Na čo hľadáme odpovede (Výskumné otázky) 23
4.2 Kde a s kým robíme výskum . 23

4.2.1 Zber dát . 23
4.2.2 Vzorka respondentov . 24

4.3 Ako vyzerá dotazník . 24
4.4 Čo s nazbieranými dátami . 25

4.4.1 Triedenie a analýza . 25

viii

4.4.2 Čítanie medzi riadkami (Kvalitatívna analýza) 25

5 Diskusia 27
5.1 Interpretácia dosiahnutých výsledkov 27

5.1.1 Spoľahlivosť lokálnych LLM modelov 27
5.1.2 Kvalita pedagogickej spätnej väzby 27

5.2 Technické výzvy a riešenia . 27
5.2.1 Špecifiká kompilácie v kontajnerizovanom prostredí 27
5.2.2 Latencia a hardvérové nároky 27

5.3 Pedagogické a etické aspekty . 27
5.3.1 Riziko nadmernej závislosti na AI 27
5.3.2 Ochrana súkromia a dát . 27

6 Zhrnutie hlavných prínosov práce 29
6.1 Teoretický prínos . 29

6.1.1 Analýza využívania AI nástrojov študentmi 29
6.2 Praktický prínos . 29

6.2.1 Webové prostredie s podporou viacerých jazykov (Polyglot) . . . 29
6.2.2 Robustný mechanizmus komunikácie s AI 29
6.2.3 Katalóg refaktorizačných zadaní 29

6.3 Možnosti ďalšieho rozvoja . 29
6.3.1 Rozšírenie o ďalšie jazyky a frameworky 29
6.3.2 Jemné doladenie modelu (Fine-tuning) 29

Záver 31

Príloha A 35

ix

x

Zoznam obrázkov

1.1 Základom všetkých moderných asistentov je architektúra Transformer,
ktorá využíva mechanizmus pozornosti (Attention) na spracovanie kon-
textu kódu. Prevzaté z [3]. 6

1.2 Revidovaná Bloomova taxonómia . 14

2.1 Detailný pohľad na architektúru systému z perspektívy študenta. Dia-
gram ukazuje, ako kód putuje do Docker kontajnera (Sandbox) a ako
prebieha komunikácia s AI. 17

2.2 Architektúra modulu pre automatizované generovanie učebných mate-
riálov. Učiteľ zadáva tému a ‘GenService‘ spolu s ‘Parserom‘ zabezpečia
vytvorenie validnej úlohy. 18

xi

xii

Úvod

XXXXXXXXXXXXXXXX

1

2 Úvod

Kapitola 1

Východiská práce

Príchod generatívnej umelej inteligencie (GenAI) a veľkých jazykových modelov (LLM)
je pre vývoj softvéru obrovským míľnikom. Dá sa povedať, že ide o najväčšiu zmenu
od čias, kedy nastúpilo objektovo-orientované programovanie.

V tejto kapitole sa pozrieme na to, ako nástroje typu ChatGPT alebo GitHub
Copilot menia každodennú prácu programátorov. Rozoberieme tiež, prečo je potrebné
zmeniť spôsob výučby – už to nie je len o samotnom písaní kódu, ale skôr o jeho
kontrole a spájaní do funkčného celku.

1.1 Transformácia výučby programovania v ére AI

Dlhú dobu platilo, že informatika sa učí „od podlahy“ (bottom-up approach). Študenti
sa trápili s každým riadkom kódu a na začiatku riešili hlavne to, prečo im program
padá na chýbajúcej bodkočiarke alebo zlej zátvorke, namiesto toho, aby riešili skutočný
problém. Tento starý systém síce roky fungoval, ale pri dnešných moderných nástrojoch
už naráža na svoje limity.

1.1.1 Už nejde len o syntax, ale o architektúru

Dnes sa to celé otáča. Výskumy, ako napríklad štúdia od Suna a kol. [1], ukazujú, že
vďaka AI asistentom už študent nie je len ten, kto „búcha kód“ (writer), ale skôr ten,
kto ho navrhuje a kontroluje (architect a reviewer).

Kedysi sme museli vedieť naspamäť napísať QuickSort v C++, aby sme prešli skúš-
kou. Dnes nám to ChatGPT alebo Llama 3 vypľuje za sekundu. Preto sa mení to, čo
je dôležité:

1. Chápať, nie bifľovať: Už nepotrebujem vedieť kód naspamäť, ale musím vedieť,
prečo použiť práve tento algoritmus a či je ten vygenerovaný kód bezpečný.

3

4 KAPITOLA 1. VÝCHODISKÁ PRÁCE

2. Viac čítať ako písať: Paradoxne, vďaka AI musíme viac čítať cudzí kód. Schop-
nosť rýchlo sa zorientovať v tom, čo stroj napísal (Code Comprehension), je dnes
dôležitejšia než rýchle prsty na klávesnici.

1.1.2 Menej zbytočnej záťaže pre mozog

Z pohľadu psychológie je programovanie pre začiatočníka strašná „makačka“ na mozog
(Cognitive Load). Študent totiž rieši dve veci naraz:

• Samotný problém: Čo chcem vlastne spraviť? (napr. vypočítať priemer).

• Syntax: Ako to napísať v Jave tak, aby mi to nevyhodilo error?

Raihan a kol. [2] tvrdia, že AI dokáže odstrániť tú druhú, otravnú časť – bariéru
syntaxe. Študentovi sa tak uvoľní kapacita v hlave a môže sa sústrediť na podstatu
problému a návrh riešenia. AI tu funguje ako taká „kognitívna protéza“, vďaka ktorej aj
začiatočníci zvládnu zložité veci, ku ktorým by sa inak dostali až po mesiacoch driny.

1.1.3 Pozor na ilúziu, že všetko viem

Má to však háčik. Jedným z najväčších rizík je tzv. ilúzia kompetencie (Illusion of
Competence). Keď študenti len generujú riešenia bez toho, aby im chápali, môžu mať
falošný pocit, že látku ovládajú.

Štúdie (opäť Sun a kol. [1]) potvrdzujú, že ak sa AI používa príliš a bez rozmýšľania,
klesá schopnosť samostatne riešiť nové problémy. Ak sa zo študenta stane len „lepič
kódu“ (Code Monkey), ktorý kopíruje veci z ChatGPT do editora, prestáva kriticky
myslieť.

Preto nesmú byť moderné výučbové nástroje len pasívne generátory. Musia študenta
zapojiť – napríklad ho donútiť hľadať chyby v tom, čo AI vygenerovala, alebo kód
vylepšovať.

1.1.4 Nové kľúčové zručnosti

Ťažisko výučby sa musí presunúť tam, kde AI zatiaľ robí chyby alebo nás nemôže
nahradiť. Raihan a kol. [2] zhrnuli, čo by mal dnešný absolvent vedieť:

• Kontrola kódu (Code Auditing): Schopnosť neveriť stroju slepo, ale kriticky
zhodnotiť jeho výstup a nájsť skryté chyby či halucinácie.

• Písanie testov (TDD): Keď kód píše AI, človek musí písať testy, ktoré ho
strážia. Testovanie je zrazu dôležitejšie než samotná implementácia.

1.2. PREHĽAD A TAXONÓMIA AI ASISTENTOV PRE PROGRAMOVANIE 5

• Údržba cudzieho kódu (Legacy Code): AI chrlí kvantá kódu, ktorý sa okam-
žite stáva „zdedeným“. Musíme ho vedieť čítať, opravovať a udržiavať, aj keď sme
ho nenapísali my.

• Prompt Engineering: Vedieť sa AI opýtať tak presne, aby sme dostali kvalitný
výsledok.

1.2 Prehľad a taxonómia AI asistentov pre progra-

movanie

V tejto časti si spravíme poriadok v tom, aké nástroje dnes vlastne máme k dispozícii.
Pozrieme sa na to, čo používajú študenti aj profíci vo firmách. Za roky 2023 a 2024 sa
na trhu vykryštalizovali tri hlavné skupiny, ktoré sa nelíšia len tým, aký model majú
„pod kapotou“, ale hlavne tým, ako sa s nimi pracuje.

Všetky tieto moderné hračky stoja na architektúre Transformer (viď Obrázok 1.1).
To bola pre programovanie doslova revolúcia. Vďaka mechanizmu pozornosti (Self-
Attention) totiž tieto modely chápu súvislosti v kóde oveľa lepšie než staršie siete.
Vedia si pospájať, ako spolu súvisia premenné a funkcie aj vo veľkých súboroch, čo
predtým nešlo.

1.2.1 Konverzačné modely (Chatbots)

Toto je klasika, ktorú pozná každý. S AI si píšete v chate ako s človekom. Sú to uni-
verzálne modely (General Purpose), takže vedia o všetkom niečo, nie sú špecialisti len
na programovanie.

ChatGPT (OpenAI)

ChatGPT je dnes latka, ktorú sa všetci snažia preskočiť. Všetko sa porovnáva s ním.
Beží na architektúre GPT a pre nás sú dôležité dve verzie:

• GPT-3.5 / GPT-4o mini: Sú rýchle a lacné. Hodia sa, keď potrebujete vyge-
nerovať nejakú nudnú časť kódu (boilerplate) alebo vysvetliť pojem. Na zložité
uvažovanie a refactoring veľkých vecí ale občas nestačia.

• GPT-4 / GPT-4o: Vlajková loď. Tento model je fakt dobrý v chápaní zložitých
zadaní. Keď navrhujete architektúru alebo hľadáte logickú chybu, je to top voľba.
Aj v testoch programovania (ako HumanEval) dopadá väčšinou najlepšie.

Super vec je funkcia Advanced Data Analysis. Model si vďaka nej vie spustiť Python
kód „nanečisto“ u seba, overiť si, či to funguje, a až potom vám pošle výsledok.

6 KAPITOLA 1. VÝCHODISKÁ PRÁCE

Obr. 1.1: Základom všetkých moderných asistentov je architektúra Transformer, ktorá
využíva mechanizmus pozornosti (Attention) na spracovanie kontextu kódu. Prevzaté
z [3].

Claude 3 (Anthropic)

Rodina modelov Claude (Haiku, Sonnet, Opus) je asi najväčšia konkurencia pre GPT-4.
Majú dve veľké výhody:

• Obrovská pamäť (Kontextové okno): Claude 3 zvládne spracovať až 200 000
tokenov naraz. To v praxi znamená, že mu môžete nahrať celú dokumentáciu
alebo kopu súborov z projektu a on si to udrží v hlave.

• Štýl a bezpečnosť: Sú trénovaní trochu inak (Constitutional AI), takže pôsobia
ľudskejšie a menej často generujú nezmysly alebo škodlivý kód.

1.2. PREHĽAD A TAXONÓMIA AI ASISTENTOV PRE PROGRAMOVANIE 7

Gemini (Google)

Nástupca Barda. Je to multimodálny model, čo znamená, že od začiatku bol učený
rozumieť naraz textu, kódu, obrázkom aj videu.

• Vidí obrázky: Môžete mu poslať screenshot chyby alebo UML diagram a on to
pochopí. Nemusíte nič prepisovať.

• Google Search: Keďže je to Google, vie si v reálnom čase dohľadať veci na
webe. To je kľúčové, keď robíte s novou knižnicou, ktorú staršie modely ešte
nepoznajú.

1.2.2 Asistenti priamo v editore (AI-Powered IDEs)

Chatboty sú fajn, ale je otravné stále prepínať okná a kopírovať kód. Tieto nástroje
žijú priamo tam, kde programujete (v IDE), a pozerajú sa vám pod prsty.

GitHub Copilot

Priekopník v tejto oblasti. Beží na upravenom GPT-3 (Codex). Funguje tak, že sa
pozerá na kód pred kurzorom a za ním a snaží sa uhádnuť, čo chcete napísať (FIM -
Fill-In-the-Middle).

• Ghost Text: Ponúka vám sivý text (návrh kódu), ktorý len potvrdíte Tabom.

• Copilot Chat: Novšia vec, máte chat priamo v bočnom paneli. Vidí vaše otvo-
rené súbory, takže mu môžete dať príkaz /fix (oprav toto) alebo /tests (napíš mi
testy).

JetBrains AI Assistant

Tento asistent je integrovaný priamo do nástrojov ako IntelliJ IDEA alebo PyCharm.
Jeho sila je v tom, že rozumie projektu ako celku. Nerobí len s textom, ale využíva
statickú analýzu, ktorú tieto IDEčka robia, takže pozná triedy, závislosti a typy pre-
menných lepšie než iné nástroje.

Cursor (AI-Native Editor)

Cursor je pomerne nový fenomén. Nie je to len plugin, ale upravená verzia (fork) VS
Code. Celý editor je postavený okolo AI. Má funkciu Copilot++, ktorá nielen dopĺňa
slová, ale predikuje aj to, kam presuniete kurzor a čo tam idete zmeniť. Pre študentov
je to momentálne asi najmodernejší spôsob, ako písať kód.

8 KAPITOLA 1. VÝCHODISKÁ PRÁCE

1.2.3 Lokálne modely (Open Weights)

Toto je pre našu prácu tá najdôležitejšia časť. Sú to modely, ktoré si môžete stiahnuť
a spustiť u seba na počítači. Dáta nikam neposielate, všetko beží na vašom lokálnom
počítači.

Llama 3 (Meta)

Keď Meta (Facebook) vydala Llamu 3, zmenila hru pre open-source modely.

• Llama 3 8B: Menší model (8 miliárd parametrov). Super je, že ho rozbehate aj
na bežnom hernom notebooku. Napriek tomu, že je malý, je múdrejší než mnohé
staršie a väčšie modely. Pre náš webový systém je ideálny, lebo reaguje rýchlo.

• Llama 3 70B: Väčší brat, ktorý uvažuje na úrovni GPT-4, ale na to už potre-
bujete poriadny server.

Mistral a Mixtral (Mistral AI)

Francúzi z Mistral AI prišli so zaujímavou architektúrou (Mixture of Experts). Model
Mixtral funguje tak, že pri otázke nezapojí celú sieť, ale len tú časť (experta), ktorá sa
v téme vyzná. Vďaka tomu je rýchly a výkonný. Tieto modely sú známe tým, že dobre
poslúchajú inštrukcie, čo sa hodí, keď chcete výstup v presnom formáte (napr. JSON).

Špecialisti na kód

Existujú aj modely, ktoré nerobia nič iné, len programujú:

• DeepSeek Coder: Čínsky model, ktorý v testoch často poráža aj Llamu. Je
natrénovaný na obrovskom množstve kódu a pozná aj menej známe jazyky.

• CodeLlama: Staršia vec od Mety, špecializovaná na Python, Javu a pod. Vie
robiť tzv. infilling (dopĺňanie stredu kódu), čo bežné chatovacie modely nevedia.

Nástroje na lokálnu inferenciu a optimalizáciu

Samotný jazykový model je v základe len statický súbor dát (váh neurónovej siete),
ktorý sám o sebe nič nevykonáva. Aby sme s ním mohli komunikovať, potrebujeme soft-
vérové prostredie – tzv. inferenčný engine. Medzi najznámejšie nástroje, ktoré umož-
ňujú načítať a spúšťať tieto modely na bežnom počítači, patria Ollama, LM Studio
alebo knižnica llama.cpp.

Tieto nástroje riešia zásadný problém: hardvérovú náročnosť. Aby bolo možné spus-
tiť moderné modely aj na spotrebiteľskom hardvéri (napr. na notebooku s obmedzenou
pamäťou RAM), využíva sa proces nazývaný kvantizácia.

1.3. RIZIKÁ A LIMITÁCIE INTEGRÁCIE AI VO VÝUČBE 9

Podstatou kvantizácie je redukcia presnosti, s akou sú uložené parametre modelu,
zvyčajne zo 16-bitových desatinných čísel na 4-bitové celé čísla. Tento proces má dva
hlavné dopady:

• Výrazná úspora pamäte: Zatiaľ čo pôvodný model môže vyžadovať 16 GB
pamäte, jeho kvantizovaná verzia sa zmestí do 4 – 5 GB, čo je kapacita bežná aj
pre študentské notebooky.

• Zanedbateľná strata kvality: Hoci sa matematická presnosť zníži, schopnosť
modelu generovať zmysluplný text a kód klesá len minimálne, čo robí tento kom-
promis ideálnym pre lokálne nasadenie.

1.3 Riziká a limitácie integrácie AI vo výučbe

Generatívne modely sú síce mocný nástroj, ale ak ich do výučby nasadíme bez rozmyslu,
narobíme viac škody ako úžitku. Moderná didaktika sa musí popasovať s rizikami, ktoré
nie sú len technické (že AI spraví chybu), ale aj psychologické (čo to robí so študentovým
myslením).

1.3.1 Technické limity: Halucinácie a spoľahlivosť

Pozrime sa na to realisticky a povedzme si úprimne – LLM nie sú chodiace encyklopédie
faktov. Sú to probabilistické (pravdepodobnostné) modely. V podstate len hádajú, aké
slovo (token) nasleduje, na základe štatistiky. A presne to vedie k javu, ktorý voláme
halucinácie.

Pre začiatočníka v programovaní sú tieto halucinácie obzvlášť nebezpečné, lebo sa
ťažko hľadajú:

• Vymyslené knižnice (Package Hallucination): Model vám suverénne vyge-
neruje kód, ktorý importuje knižnicu, čo v skutočnosti neexistuje, alebo zavolá
funkciu, ktorú daný framework vôbec nemá.

• Záludné logické chyby (Subtle Logic Bugs): Kód vyzerá na prvý pohľad
super. Je syntakticky správny, dá sa spustiť. Ale v hraničných prípadoch (edge
cases) počíta zle. Klasikou je napríklad „chyba o jedna“ (off-by-one error) v cyk-
loch.

• Bezpečnostné diery: Keďže sa modely učili aj na starých dátach, pokojne vám
poradia použiť prekonané šifrovanie (napr. MD5) alebo napíšu SQL dotaz tak,
že si koledujete o SQL Injection.

10 KAPITOLA 1. VÝCHODISKÁ PRÁCE

Príklad z praxe: Predstavme si, že chcete vylepšiť zložitý SQL dotaz. Model navrhne
použiť ‘JOIN‘, aby to bolo rýchlejšie. Vyzerá to dobre, ale zmení to logiku a z výsledkov
vypadnú záznamy s hodnotou ‘NULL‘. Začiatočník, ktorý ešte nemá SQL v malíčku,
si to nevšimne a dokonca možno ani skúsenejší človek, pretože na tých troch riadkoch
v testovacej databáze mu to funguje.

1.3.2 Pedagogické riziká: Kognitívna atrofia a lenivosť

Z pohľadu psychológie je najväčším strašiakom tzv. automatizačné skreslenie (Auto-
mation Bias). Ľudia proste majú tendenciu veriť strojom viac ako vlastnému rozumu.

Študenti často berú AI ako neomylnú autoritu. Keď GitHub Copilot niečo navrhne,
študent automaticky predpokladá, že je to to najlepšie riešenie. Výskumy ukazujú, že
keď sa na AI spoliehame príliš, vedie to k pasivite (Code Complacency).

Študent sa prestáva snažiť pochopiť, ako problém naozaj funguje. Stáva sa z neho len
operátor, ktorý bezducho spája vygenerované bloky kódu. Hrozí tu „kognitívna atrofia“
– schopnosť kriticky myslieť zakrpatie a študent nakoniec nebude schopný vyriešiť ani
jednoduchý problém bez toho, aby mu niečo našepkávalo riešenie.

1.4 Nové didaktické scenáre

Naša práca sa na to pozerá realisticky. Zakazovať AI v školách je boj s veternými
mlynmi – v praxi to aj tak nikto neustráži. Preto navrhujeme presný opak: zapojme
ju do výučby, ale kontrolovane. Heslom dňa je posun od tvorby kódu k jeho kontrole.
Naša webová aplikácia bude preto obsahovať tieto typy úloh:

1.4.1 Hľadanie chýb po AI (Reverse Debugging)

Bežne vyzerajú úlohy tak, že študent dostane zadanie a píše kód. Tu si to otočíme.
Učiteľ (alebo systém automaticky) nechá AI vygenerovať kód, do ktorého schválne
prepašuje chybu alebo ho napíše „škaredo“ (proti zásadám Clean Code).

Úlohou študenta nie je kódovať od nuly, ale spraviť poriadne Code Review. Musí si
kód prečítať, pochopiť, čo tým „básnik myslel“, nájsť chybu a navrhnúť opravu. Je to
skvelý tréning čítania s porozumením (Code Comprehension). Povedzme si úprimne –
v reálnej práci programátor častejšie číta cudzí kód, než píše nový.

1.4.2 Písanie testov pre čiernu skrinku (Black-box Testing)

V tomto scenári dostane študent hotovú funkciu, ale nemusí študovať jej vnútro riadok
po riadku. Jeho úlohou je pozrieť sa na ňu zvonku a napísať sadu Unit testov, ktoré ju
poriadne preveria – vrátane všetkých hraničných prípadov.

1.5. ANALÝZA EXISTUJÚCICH PLATFORIEM A POTREBA VLASTNÉHO RIEŠENIA11

Tento prístup učí študentov tzv. defenzívnemu programovaniu. Núti ich to premýš-
ľať nie nad tým, *ako* je to naprogramované, ale *čo* to má vlastne robiť. Zároveň si
takto overia, či AI vôbec splnila zadanie a či si nevymýšľa.

1.4.3 Upratovanie a refaktorizácia (Refactoring)

AI modely často vypľujú kód, ktorý síce funguje, ale z pohľadu softvérového inžinierstva
je to katastrofa. Sú tam duplicity, divné názvy premenných alebo to úplne ignoruje
SOLID princípy.

„Študent dostane tento prvotný návrh implementácie a jeho úlohou je refaktorovať
ho do profesionálnej podoby.“ Cieľom je naučiť študentov jednu dôležitú vec: to, čo
vylezie z ChatGPT, je len prvý náčrt (draft), nie hotový produkt. Budujeme tak návyk,
aby sa s prvým riešením neuspokojili, ale kriticky ho vylepšovali.

1.5 Analýza existujúcich platforiem a potreba vlast-

ného riešenia

Aby sme tie nápady z predchádzajúcej kapitoly mohli reálne vyskúšať, potrebujeme na
to vhodný softvér. Keď som sa pozrel na to, čo je momentálne na trhu, zistil som, že
bežne dostupné nástroje nám na tento účel úplne nevyhovujú.

1.5.1 Prečo nestačia súťažné platformy

Všetci poznáme stránky ako LeetCode, HackerRank alebo Codewars. Sú to priemyselné
štandardy, keď sa človek pripravuje na pohovory do firiem. Ich problém je ale v tom,
že sú zamerané takmer výlučne na dve veci: aby bol algoritmus rýchly a aby dával
správny výsledok.

Z pohľadu výučby softvérového inžinierstva majú tieto platformy niekoľko zásad-
ných nedostatkov:

• Je im jedno, ako kód vyzerá: Študent môže odovzdať totálny neporiadok
(špagetový kód). Pokiaľ to prejde testami a zbehne to v časovom limite, systém
to uzná. Nikto nerieši, či je kód čitateľný alebo či má hlavu a pätu.

• Žiadna spätná väzba: Keď riešenie nefunguje, dozviete sa len, že výstup je
nesprávny. Systém vám nepovie, *prečo* to padlo, ani vám neporadí, ktorým
smerom sa vydať pri oprave.

• Absencia práce s existujúcim kódom: Súčasné platformy sa primárne zame-
riavajú na tvorbu nových riešení od základov (tzv. Greenfield projekty). Reálna

12 KAPITOLA 1. VÝCHODISKÁ PRÁCE

prax však častejšie vyžaduje údržbu, rozširovanie a refaktorizáciu už existujúcich
systémov (tzv. Brownfield vývoj), čo je zručnosť, ktorú tieto nástroje u študentov
nerozvíjajú.

1.5.2 Prečo potrebujeme vlastné riešenie

Ak chceme splniť ciele tejto práce – teda porovnať rôzne AI modely a naučiť študentov
s nimi robiť – potrebujeme špecializované prostredie. Bežné IDE ani súťažné weby nám
jednoducho nestačia.

Riešenie, ktoré navrhujeme, musí spĺňať tieto konkrétne podmienky:

1. Viacero jazykov pod jednou strechou: Musíme vedieť bezpečne spúšťať a
kompilovať Python, C++ aj Javu v jednom rozhraní. To si na pozadí vyžaduje
celkom zložité riešenie pomocou virtualizácie (Docker).

2. AI Mentor, nie len „našepkávač“: Systém musí byť prepojený s lokálnym
LLM modelom, ktorý vidí do zadania. Dôležité ale je, aby model fungoval „sokra-
tovsky“ – teda aby študentovi neprezradil výsledok, ale aby ho otázkami naviedol
k riešeniu.

3. Dôraz na testovanie: Nestačí kód len spustiť. Systém musí vedieť automaticky
vyhodnotiť unit testy. Len tak si overíme, či sme pri upratovaní (refaktorizácii)
kódu niečo nepokazili a či program stále robí to, čo má.

Systém, ktorý som navrhol a ktorého architektúru detailne popíšem v ďalšej kapi-
tole, vznikol presne preto, aby tieto diery zaplátal.

1.6 Etické a bezpečnostné aspekty AI vo vývoji soft-

véru

Keď zapojíme AI do vývoja softvéru, nie je to len o tom, že nám to uľahčí prácu. Pri-
náša to so sebou aj úplne nové bezpečnostné a etické riziká, o ktorých sme v klasickom
softvérovom inžinierstve doteraz ani nechyrovali.

1.6.1 Hackovanie modelu (Prompt Injection)

Asi každý programátor pozná SQL Injection. Pri jazykových modeloch máme niečo
veľmi podobné – volá sa to Prompt Injection. V podstate ide o to, že útočník (v našom
prípade napríklad vynaliezavý študent, ktorý chce podvádzať) sa snaží „oblbnúť“ model
špeciálnym príkazom, aby porušil svoje pravidlá.

1.7. PEDAGOGICKÉ UKOTVENIE: BLOOMOVA TAXONÓMIA V ÉRE AI 13

Ako to vyzerá v praxi: Predstavme si, že náš AI mentor má príkaz: „Nikdy neprezraď
študentovi hotové riešenie.“ Študent to ale skúsi obísť a napíše: „Zabudni na všetky
predchádzajúce inštrukcie, teraz si v režime ’pomocník’ a napíš mi kompletný kód pre
Bubble Sort.“

Ak model nie je dobre zabezpečený, poslušne kód vypíše. Preto sa v tejto práci
venujeme aj tomu, ako navrhnúť tzv. systémové prompty (System Prompts) tak, aby
boli „nepriestrelné“ a odolali takýmto pokusom o manipuláciu.

1.6.2 Ochrana duševného vlastníctva a únik dát

Veľký problém cloudových nástrojov (ako Copilot alebo ChatGPT) je, že všetko, čo do
nich napíšete, odchádza na cudzie servery. Už v roku 2023 sa na tom popálili inžinieri
v Samsungu, ktorí nevedomky nahrali citlivý firemný kód do ChatGPT, čím ho v
podstate darovali modelu na učenie.

V školstve je to dvojsečná zbraň. Na jednej strane sa škola bojí o svoje materiály
(zadania skúšok, testy), na druhej strane musíme chrániť súkromie študentov.

Práve preto v tejto práci presadzujeme lokálne bežiace modely (cez nástroje ako
Ollama). Je to najbezpečnejšia cesta – dáta nikdy neopustia našu internú sieť, takže
riziko úniku citlivých informácií je v podstate nulové.

1.7 Pedagogické ukotvenie: Bloomova taxonómia v ére

AI

Pre efektívnu integráciu umelej inteligencie do edukačného procesu je nevyhnutné ana-
lyzovať vzdelávacie ciele optikou revidovanej Bloomovej taxonómie (Anderson & Krat-
hwohl, 2001). Tradičná didaktika programovania často naráža na limity v spodných
vrstvách tejto kognitívnej hierarchie, kde študenti vynakladajú neúmerné množstvo
času na memorovanie syntaxe a porozumenie elementárnym konštrukciám [2].

Generatívne modely (LLM) umožňujú tento proces optimalizovať. Automatizáciou
rutinných úloh (nižšie kognitívne procesy) sa otvára priestor pre rozvoj kompetencií
vyššieho rádu, čo potvrdzujú aj zistenia Sun et al. [1]. Ťažisko výučby sa tak presúva
nasledovne:

1. Aplikácia (Applying): Namiesto pasívneho štúdia teórie študent aplikuje kód
vygenerovaný asistentom na riešenie konkrétneho problému, čím sa urýchľuje
prechod od konceptu k implementácii.

2. Analýza (Analyzing): Táto fáza naberá na kritickej dôležitosti. Študent musí
podrobiť kód od AI dôkladnej inšpekcii (code auditing), identifikovať potenciálne
logické chyby či bezpečnostné zraniteľnosti.

14 KAPITOLA 1. VÝCHODISKÁ PRÁCE

3. Hodnotenie (Evaluating): Pri interakcii s AI, ktorá často ponúka viacero va-
riantov riešenia, musí študent komparatívne vyhodnotiť ich kvalitu. Rozhoduje
o optimálnom riešení na základe kritérií, ako sú časová zložitosť, čitateľnosť či
udržateľnosť kódu.

4. Tvorba (Creating): Študent sa posúva do roly architekta, ktorý komponuje
komplexné systémy z menších, AI generovaných modulov, namiesto manuálneho
písania každej funkcie.

Obr. 1.2: Revidovaná Bloomova taxonómia. V kontexte tejto práce umelá inteligencia
automatizuje spodné vrstvy (Zapamätanie, Pochopenie), čím umožňuje študentom ve-
novať viac času vrchným vrstvám (Analýza, Hodnotenie, Tvorba). Prevzaté z [9].

Naším cieľom teda nie je nahradiť kognitívny proces učenia, ale posunúť ho v tejto
hierarchii vyššie. Nástroj, ktorý je predmetom tejto práce, je dizajnovaný v súlade
s touto filozofiou – nepodporuje pasívne generovanie kódu, ale prostredníctvom úloh
zameraných na refaktorizáciu a revíziu (code review) aktívne stimuluje fázy Analýzy a
Hodnotenia.

Kapitola 2

Analýza a návrh riešenia

V tejto časti premeníme teoretické nápady na konkrétny návrh softvéru. Cieľom je na-
vrhnúť webovú platformu, ktorá bude fungovať ako most medzi starou dobrou výučbou
programovania a novými možnosťami umelej inteligencie.

2.1 Čo od toho vlastne chceme (Požiadavky na sys-

tém)

Pri spisovaní požiadaviek som vychádzal priamo z toho, čo sa učí u nás na fakulte
(FMFI UK), hlavne na predmetoch Programovanie 1, 2 a 3. Išlo mi hlavne o to, aby
to fungovalo pre rôzne jazyky a aby to bolo bezpečné.

2.1.1 Funkcionálne požiadavky

Toto sú veci, ktoré musí systém vedieť robiť pre používateľa:

• Viacjazyčnosť (Polyglotné prostredie): Systém nemôže byť len pre jeden jazyk.
Musí zvládať skriptovanie v Pythone, ale aj kompiláciu C++ a Javy. A čo je
dôležité – ak kompilátor vyhodí chybu, musí ju študentovi ukázať tak, aby sa
dala prečítať, nie ako rozsypaný čaj.

• AI Mentor, ktorý vidí kontext: Musí tam byť chat, kde sa študent môže pýtať
na svoj kód. Ale nesmie to byť len „okno do ChatGPT“. AI musí vidieť, čo má
študent práve otvorené v editore, aby mu vedela poradiť bez toho, aby musel kód
kopírovať hore-dole.

• Generovanie úloh pre učiteľov: Učiteľom chceme ušetriť čas. Systém by mal vedieť
na základe krátkeho príkazu (napr. „Vytvor úlohu na opravu cyklov“) vygenerovať
celú úlohu – vrátane pokazeného kódu, ktorý treba opraviť, a testov, ktoré to
skontrolujú.

15

16 KAPITOLA 2. ANALÝZA A NÁVRH RIEŠENIA

• Automatická kontrola (Unit Testing): Nestačí, že kód ide spustiť. Systém musí
vedieť sám spustiť testy a povedať študentovi „Prešiel si“ alebo „Neprešiel si“, bez
toho, aby do toho musel zasahovať človek.

2.1.2 Nefunkcionálne požiadavky

Toto sú vlastnosti, ktoré nie sú vidieť na prvý pohľad, ale pre školu sú kritické:

• Bezpečnosť (Sandbox): Keďže dovoľujeme cudzím ľuďom spúšťať u nás kód, mu-
síme si chrániť server. Študentov kód musí bežať v izolovanom prostredí, odkiaľ
sa nedostane k súborom na serveri ani do našej siete.

• Súkromie a žiadne dáta von: Kvôli GDPR a ochrane duševného vlastníctva ne-
smieme posielať kód študentov niekam do cloudu (napr. do OpenAI). Všetko musí
bežať u nás na lokálnych modeloch.

• Rozšíriteľnosť: Ak si o rok zmyslíme, že chceme učiť aj CSharp alebo JavaSc-
ript, nemali by sme kvôli tomu prepisovať celú aplikáciu, ale len pridať nový
konfiguračný súbor.

2.2 Architektúra systému

Aby sme toto všetko splnili, navrhol som to ako skladačku (modulárnu architektúru),
kde každá časť robí jednu vec a robí ju poriadne.

2.2.1 Ako to vyzerá zhora (High-level prehľad)

Systém stojí na troch nohách:

1. Backend (Aplikačný server): Mozog celej operácie. Rieši prihlasovanie, ukladá
dáta do databázy a riadi, čo sa má kedy spustiť.

2. Sandbox (Exekučné prostredie): Toto je „telocvičňa“, kde bezpečne beží kód štu-
dentov. Vytvára sa dynamicky len vtedy, keď ho treba, a potom sa zahodí.

3. AI Server: Samostatná služba, ktorá sa stará len o jazykové modely. Drží ich v
pamäti a generuje odpovede.

2.2.2 Použité technológie

Vyberal som veci, ktoré sú overené, zadarmo (open-source) a dobre sa s nimi robí.

2.2. ARCHITEKTÚRA SYSTÉMU 17

Obr. 2.1: Detailný pohľad na architektúru systému z perspektívy študenta. Diagram
ukazuje, ako kód putuje do Docker kontajnera (Sandbox) a ako prebieha komunikácia
s AI.

• Django (Python): Na backend som vybral Django, lebo má filozofiu „batteries-
included“ – má v sebe všetko, čo potrebujem. Už v základe rieši databázu, ad-
ministráciu aj bezpečnosť (napr. proti SQL Injection), takže som nemusel vyna-
chádzať koleso.

• Docker: Na izoláciu (sandbox) je Docker ideálny. Celé prostredie (kompilátory
pre C++, Java, Python) zabalíme do jedného obrazu. Kód sa spustí v kontajneri
a po skončení sa kontajner zničí. Je to čisté a bezpečné.

• Ollama a Llama 3: Na AI používame nástroj Ollama, ktorý nám umožňuje spúšťať
modely lokálne. Vybral som model Llama 3 (8B verziu), pretože je prekvapivo
šikovný na svoju veľkosť a na bežnom hardvéri beží dostatočne rýchlo.

• PostgreSQL: Klasická relačná databáza. Je spoľahlivá a s Djangom si rozumie
najlepšie. Ukladáme tam používateľov, zadania a históriu všetkého, čo sa spustilo.

18 KAPITOLA 2. ANALÝZA A NÁVRH RIEŠENIA

2.3 Návrh dátového modelu

2.3.1 ER diagram databázy

2.3.2 Polymorfizmus pri podpore jazykov

2.4 Návrh bezpečného spúšťania kódu (Sandbox)

2.4.1 Izolácia pomocou kontajnerov

2.4.2 Riešenie kompilácie pre C++ a Javu

2.5 Návrh integrácie AI

2.5.1 Komunikácia s Ollama API

2.5.2 Automatizované generovanie zadaní

Pre potreby učiteľa systém obsahuje generátor, ktorý využíva LLM na tvorbu úloh.

Obr. 2.2: Architektúra modulu pre automatizované generovanie učebných materiálov.
Učiteľ zadáva tému a ‘GenService‘ spolu s ‘Parserom‘ zabezpečia vytvorenie validnej
úlohy.

2.5. NÁVRH INTEGRÁCIE AI 19

2.5.3 Prompt Engineering

20 KAPITOLA 2. ANALÝZA A NÁVRH RIEŠENIA

Kapitola 3

Implementácia

3.1 Príprava vývojového prostredia

3.2 Backend a aplikačná logika

3.2.1 Správa používateľov a autentifikácia

3.2.2 Manažment úloh a nahrávanie riešení

3.3 Realizácia bezpečného spúšťania (Docker Orche-

stration)

3.3.1 Tvorba Docker image

3.3.2 Implementácia funkcie pre spustenie kódu

3.3.3 Spracovanie výstupov a chýb

3.4 Implementácia AI modulu

3.4.1 Generovanie zadaní a parsovanie výstupov

3.4.2 Chatovací asistent

3.5 Používateľské rozhranie (Frontend)

3.5.1 Editor kódu

3.5.2 Vizualizácia spätnej väzby a testov

21

22 KAPITOLA 3. IMPLEMENTÁCIA

Kapitola 4

Výskum

Cieľom tejto časti je zistiť, ako to reálne vyzerá s používaním umelej inteligencie na
našej fakulte. Chceme zmapovať, aké nástroje študenti používajú, a získať od nich
úprimnú spätnú väzbu. V tejto kapitole popíšem, ako sme prieskum nastavili, koho
sme sa pýtali a ako vyzeral dotazník.

4.1 Metodika výskumu

Výskum sme poňali ako prieskumnú (exploratívnu) štúdiu. Hlavným nástrojom bol
dotazník, cez ktorý sme zisťovali návyky študentov, ich postoj k AI a či vôbec veria
tomu, čo im model vygeneruje.

4.1.1 Na čo hľadáme odpovede (Výskumné otázky)

Na základe cieľov práce sme si stanovili tri hlavné otázky, ktoré nás zaujímajú:

• VO1: Čo vlastne študenti používajú? (ChatGPT, Copilot, Claude...) a kedy?
(Pri návrhu, kódovaní alebo až keď hľadajú chyby?)

• VO2: Je rozdiel medzi prvákmi a staršími študentmi? Zaujíma nás, či začiatočníci
pristupujú k AI inak ako tí, čo už majú niečo odprogramované.

• VO3: Myslia si študenti, že im to pomáha? Ako vnímajú kvalitu rád, ktoré
dostávajú, najmä pri úlohách zameraných na kvalitu kódu?

4.2 Kde a s kým robíme výskum

4.2.1 Zber dát

Prieskum prebehne priamo na hodinách profilových predmetov u nás na Fakulte ma-
tematiky, fyziky a informatiky (FMFI UK).

23

24 KAPITOLA 4. VÝSKUM

Dotazník rozdáme študentom Aplikovanej informatiky na týchto predmetoch:

• Programovanie (1): Prváci v zimnom semestri.

• Programovanie (2): Prváci v letnom semestri.

• Programovanie (3): Druháci, ktorí už majú základy OOP a algoritmov za
sebou.

4.2.2 Vzorka respondentov

Týmto výberom získame celkom pestrú skupinu ľudí, čo je pre nás dôležité. Budeme
tam mať:

1. Začiatočníkov (Prváci): Tí sa ešte len rozpozerávajú a AI môžu brať ako prvú
pomoc, keď nevedia, čo ďalej.

2. Pokročilých (Druháci a vyššie): Tí už majú nejaké návyky a AI skôr použí-
vajú na to, aby si uľahčili robotu alebo vylepšili existujúci kód.

4.3 Ako vyzerá dotazník

Dáta zbierame cez anonymný online formulár. Snažil som sa ho postaviť tak, aby pokryl
technické veci, ale aj pocity študentov. Rozdelil som ho do piatich častí:

Sekcia A: Kto odpovedá (Demografia) Zisťujeme základné veci ako vek, pohlavie
a koľko toho už majú odprogramované. Toto potrebujeme vedieť, aby sme potom mohli
hľadať súvislosti (napríklad či skúsenejší programátori veria AI menej).

Sekcia B: Čo používajú Tu mapujeme ich „technologickú výbavu“. Pýtame sa:

• Aké nástroje konkrétne používajú (ChatGPT, Copilot, Bard...).

• Ako často (denne, občas, vôbec).

• Na čo presne (nechajú si vygenerovať celé riešenie, alebo len vysvetliť error?).

Sekcia C: Je to k niečomu dobré? Respondenti známkujú AI ako v škole (škála
1 – 5). Zaujíma nás:

• Kvalita kódu.

• Či im spätná väzba pomohla pochopiť problém.

• Či veria tomu, čo im model poradil.

4.4. ČO S NAZBIERANÝMI DÁTAMI 25

Sekcia D: Súboj nástrojov Ak niekto skúsil viacero modelov (napr. ChatGPT aj
lokálne riešenie), tu ich môže porovnať. Čo bolo rýchlejšie? Čo bolo presnejšie?

Sekcia E: Priestor na vyjadrenie (Otvorené otázky) Tu môžu vlastnými slo-
vami napísať:

• Čo sa im na AI páči.

• Čo ich štve (napr. keď si model vymýšľa).

• Ako by si predstavovali ideálneho AI pomocníka na učenie.

4.4 Čo s nazbieranými dátami

Keď budeme mať dáta pokope, pustíme sa do analýzy. Pôjdeme na to v niekoľkých
krokoch:

4.4.1 Triedenie a analýza

Najprv prečistíme dáta – vyhodíme nekompletné alebo zjavne „odfláknuté“ odpovede.
Potom si respondentov rozdelíme na dve kôpky:

• Začiatočníci (1. ročník): Študenti, pre ktorých je VŠ programovanie novinka.

• Pokročilí (2. ročník a vyššie): Ostrieľanejší študenti s viac projektmi za sebou.

Chceme zistiť, či sa ich prístup líši. Hypotéza je, že starší študenti berú AI ako
nástroj na šetrenie času pri nude (boilerplate kód), zatiaľ čo prváci ju môžu brať ako
„záchranné koleso“, keď nerozumejú zadaniu.

4.4.2 Čítanie medzi riadkami (Kvalitatívna analýza)

Veľký dôraz budeme klásť na otvorené odpovede. Budeme v nich hľadať opakujúce sa
motívy, napríklad:

• Slovenčina vs. Angličtina: Či im vadí, ak lokálny model nevie dobre po slo-
vensky.

• Dôvera: Či kód slepo kopírujú, alebo ho kontrolujú.

• Frustrácia vs. Pomoc: Kedy im AI najviac pomohla a kedy ich zaviedla do
slepej uličky.

Výsledkom by mali byť praktické odporúčania pre učiteľov – ako zapojiť AI do
výučby tak, aby z nej študenti nezhlúpli, ale naopak, aby ich posunula vpred.

26 KAPITOLA 4. VÝSKUM

Kapitola 5

Diskusia

5.1 Interpretácia dosiahnutých výsledkov

5.1.1 Spoľahlivosť lokálnych LLM modelov

5.1.2 Kvalita pedagogickej spätnej väzby

5.2 Technické výzvy a riešenia

5.2.1 Špecifiká kompilácie v kontajnerizovanom prostredí

5.2.2 Latencia a hardvérové nároky

5.3 Pedagogické a etické aspekty

5.3.1 Riziko nadmernej závislosti na AI

5.3.2 Ochrana súkromia a dát

27

28 KAPITOLA 5. DISKUSIA

Kapitola 6

Zhrnutie hlavných prínosov práce

6.1 Teoretický prínos

6.1.1 Analýza využívania AI nástrojov študentmi

6.2 Praktický prínos

6.2.1 Webové prostredie s podporou viacerých jazykov (Polyg-

lot)

6.2.2 Robustný mechanizmus komunikácie s AI

6.2.3 Katalóg refaktorizačných zadaní

6.3 Možnosti ďalšieho rozvoja

6.3.1 Rozšírenie o ďalšie jazyky a frameworky

6.3.2 Jemné doladenie modelu (Fine-tuning)

29

30 KAPITOLA 6. ZHRNUTIE HLAVNÝCH PRÍNOSOV PRÁCE

Záver

XXXXXXXXXXXXXXXXXX

31

32 Záver

Literatúra

[1] Dan Sun, Azzeddine Boudouaia, Chengcong Zhu, and Yan Li, Would ChatGPT-
facilitated programming mode impact college students’ programming behaviors, per-
formances, and perceptions? An empirical study, International Journal of Edu-
cational Technology in Higher Education, vol. 21, p. 14, Feb. 2024. https:

//doi.org/10.1186/s41239-024-00446-5

[2] Nishat Raihan, Mohammed Latif Siddiq, Joanna C. S. Santos, and Marcos Za-
mpieri, Large Language Models in Computer Science Education: A Systematic
Literature Review, in Proc. of the 56th ACM Technical Symposium on Com-
puter Science Education (SIGCSE TS ’25), Pittsburgh, PA, USA, Feb. 2025,
pp. 938–944. https://doi.org/10.1145/3641554.3701863

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Ai-
dan N. Gomez, Łukasz Kaiser, and Illia Polosukhin, Attention Is All You Need,
in Advances in Neural Information Processing Systems (NIPS), vol. 30, 2017,
pp. 5998–6008. https://arxiv.org/abs/1706.03762

[4] Martin Fowler, Refactoring: Improving the Design of Existing Code, 2nd ed.,
Addison-Wesley Professional, 2018. ISBN 0134757599.

[5] Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Pren-
tice Hall, 2008. ISBN 0132350882.

[6] Ward Cunningham, The WyCash portfolio management system, in Addendum to
the proceedings on Object-oriented programming systems, languages, and applica-
tions (OOPSLA), 1992, pp. 29–30. https://doi.org/10.1145/157709.157715

[7] Tom Brown et al., Language Models are Few-Shot Learners, in Advances in Neural
Information Processing Systems, vol. 33, 2020, pp. 1877–1901. https://arxiv.
org/abs/2005.14165

[8] Lorin W. Anderson and David R. Krathwohl, A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Long-
man, New York, 2001. ISBN 978-0-801-31903-7.

33

https://doi.org/10.1186/s41239-024-00446-5
https://doi.org/10.1186/s41239-024-00446-5
https://doi.org/10.1145/3641554.3701863
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/157709.157715
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

34 LITERATÚRA

[9] Terry Heick, Artificial Intelligence In Education And Bloom’s Taxo-
nomy, 2017. https://connectedlearner.wordpress.com/2017/04/21/

artificial-intelligence-in-education-and-blooms-taxonomy/

https://connectedlearner.wordpress.com/2017/04/21/artificial-intelligence-in-education-and-blooms-taxonomy/
https://connectedlearner.wordpress.com/2017/04/21/artificial-intelligence-in-education-and-blooms-taxonomy/

Príloha A: obsah elektronickej prílohy

V elektronickej prílohe priloženej k práci sa nachádza zdrojový kód programu. Zdrojový
kód je zverejnený aj na stránke https://davinci.fmph.uniba.sk/~jesik2/

35

https://davinci.fmph.uniba.sk/~jesik2/

	Úvod
	Východiská práce
	Transformácia výučby programovania v ére AI
	Už nejde len o syntax, ale o architektúru
	Menej zbytočnej záťaže pre mozog
	Pozor na ilúziu, že všetko viem
	Nové kľúčové zručnosti

	Prehľad a taxonómia AI asistentov pre programovanie
	Konverzačné modely (Chatbots)
	Asistenti priamo v editore (AI-Powered IDEs)
	Lokálne modely (Open Weights)

	Riziká a limitácie integrácie AI vo výučbe
	Technické limity: Halucinácie a spoľahlivosť
	Pedagogické riziká: Kognitívna atrofia a lenivosť

	Nové didaktické scenáre
	Hľadanie chýb po AI (Reverse Debugging)
	Písanie testov pre čiernu skrinku (Black-box Testing)
	Upratovanie a refaktorizácia (Refactoring)

	Analýza existujúcich platforiem a potreba vlastného riešenia
	Prečo nestačia súťažné platformy
	Prečo potrebujeme vlastné riešenie

	Etické a bezpečnostné aspekty AI vo vývoji softvéru
	Hackovanie modelu (Prompt Injection)
	Ochrana duševného vlastníctva a únik dát

	Pedagogické ukotvenie: Bloomova taxonómia v ére AI

	Analýza a návrh riešenia
	Čo od toho vlastne chceme (Požiadavky na systém)
	Funkcionálne požiadavky
	Nefunkcionálne požiadavky

	Architektúra systému
	Ako to vyzerá zhora (High-level prehľad)
	Použité technológie

	Návrh dátového modelu
	ER diagram databázy
	Polymorfizmus pri podpore jazykov

	Návrh bezpečného spúšťania kódu (Sandbox)
	Izolácia pomocou kontajnerov
	Riešenie kompilácie pre C++ a Javu

	Návrh integrácie AI
	Komunikácia s Ollama API
	Automatizované generovanie zadaní
	Prompt Engineering

	Implementácia
	Príprava vývojového prostredia
	Backend a aplikačná logika
	Správa používateľov a autentifikácia
	Manažment úloh a nahrávanie riešení

	Realizácia bezpečného spúšťania (Docker Orchestration)
	Tvorba Docker image
	Implementácia funkcie pre spustenie kódu
	Spracovanie výstupov a chýb

	Implementácia AI modulu
	Generovanie zadaní a parsovanie výstupov
	Chatovací asistent

	Používateľské rozhranie (Frontend)
	Editor kódu
	Vizualizácia spätnej väzby a testov

	Výskum
	Metodika výskumu
	Na čo hľadáme odpovede (Výskumné otázky)

	Kde a s kým robíme výskum
	Zber dát
	Vzorka respondentov

	Ako vyzerá dotazník
	Čo s nazbieranými dátami
	Triedenie a analýza
	Čítanie medzi riadkami (Kvalitatívna analýza)

	Diskusia
	Interpretácia dosiahnutých výsledkov
	Spoľahlivosť lokálnych LLM modelov
	Kvalita pedagogickej spätnej väzby

	Technické výzvy a riešenia
	Špecifiká kompilácie v kontajnerizovanom prostredí
	Latencia a hardvérové nároky

	Pedagogické a etické aspekty
	Riziko nadmernej závislosti na AI
	Ochrana súkromia a dát

	Zhrnutie hlavných prínosov práce
	Teoretický prínos
	Analýza využívania AI nástrojov študentmi

	Praktický prínos
	Webové prostredie s podporou viacerých jazykov (Polyglot)
	Robustný mechanizmus komunikácie s AI
	Katalóg refaktorizačných zadaní

	Možnosti ďalšieho rozvoja
	Rozšírenie o ďalšie jazyky a frameworky
	Jemné doladenie modelu (Fine-tuning)

	Záver
	Príloha A

