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Abstrakt

Téato diplomova praca sa zaobera vyuzitim Ul asistentov (ako ChatGPT) v procese vy-
ucby programovania na Fakulte matematiky, fyziky a informatiky UK. Cielom prace
je preskimat, aky vplyv maja tieto nastroje na spravanie Studentov, kvalitu kodu a
vnimanie Al asistencie pri pisani programov. Praca tiez bude skimat, aké nastroje sii
Studentmi vyuzivané na fakulte a porovnava schopnosti réznych UI asistentov na iden-
tickych programovacich tilohach. Spolu s tymito zisteniami bude vytvorené praktické
webové prostredie, ktoré umozni studentom riesit tlohy sami alebo s podporou Al asis-
tenta, pricom sa zameria na pisanie kodu, tvorbu testov, refaktoriziciu a rozSirovanie
zdedeného kodu. Vysledky prace mozu pomdct pri optimalizacii vyucovacieho procesu

a pri spravnej implementacii Al néstrojov do vzdelavacieho systému.

Krluacové slova: Ul asistenti, ChatGPT, vyucba programovania, umelé inteligencia,

webové prostredie, refaktorizécia kodu
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Abstract

This thesis focuses on the use of Ul assistants (such as ChatGPT) in the process of tea-
ching programming at the Faculty of Mathematics, Physics and Informatics, Comenius
University. The main goal of the work is to examine the impact these tools have on
students’ behavior, code quality, and perceptions of Al assistance in programming. The
thesis will also investigates which tools are currently used by students at the faculty
and compares the capabilities of different UI assistants on identical programming tasks.
Together with these findings, a practical web environment will be created, allowing stu-
dents to solve tasks independently or with the support of an Al assistant, focusing on
code writing, test creation, refactoring, and expanding legacy code. The results of the
thesis may help optimize the teaching process and the proper implementation of Al

tools in the educational system.

Keywords: Ul assistants, ChatGPT, , programming education, artificial intelligence,

web environment, code refactoring
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Kapitola 1
Vychodiska prace

Prichod generativnej umelej inteligencie (GenAl) a velkych jazykovych modelov (LLM)
je pre vyvoj softvéru obrovskym milnikom. Da sa povedat, Ze ide o najvacsiu zmenu
od ¢ias, kedy nastupilo objektovo-orientované programovanie.

V tejto kapitole sa pozrieme na to, ako nastroje typu ChatGPT alebo GitHub
Copilot menia kazdodennt pracu programatorov. Rozoberieme tiez, preco je potrebné
zmenit spésob vyucby — uz to nie je len o samotnom pisani kodu, ale skér o jeho

kontrole a spajani do funkéného celku.

1.1 Transformacia vyucby programovania v ére Al

Dlhu dobu platilo, Ze informatika sa uéi ,,od podlahy“ (bottom-up approach). Studenti
sa trapili s kazdym riadkom koédu a na zaciatku riesili hlavne to, prec¢o im program
padé na chybajicej bodkociarke alebo zlej zatvorke, namiesto toho, aby riesili skuto¢ny
problém. Tento stary systém sice roky fungoval, ale pri dnesnych modernych néastrojoch

uzZ naraza na svoje limity.

1.1.1 Uz nejde len o syntax, ale o architektiru

Dnes sa to celé otac¢a. Vyskumy, ako napriklad $tidia od Suna a kol. 1], ukazuju, ze
vdaka Al asistentom uz Student nie je len ten, kto ,btcha kod*“ (writer), ale skor ten,
kto ho navrhuje a kontroluje (architect a reviewer).

Kedysi sme museli vediet naspamét napisat QuickSort v C+-+, aby sme presli skas-
kou. Dnes nam to ChatGPT alebo Llama 3 vypluje za sekundu. Preto sa meni to, ¢o

je dolezité:

1. Chapat, nie biflovat: Uz nepotrebujem vediet kod naspamit, ale musim vediet,

preco pouzit prave tento algoritmus a ¢i je ten vygenerovany kod bezpecny.
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2. Viac ¢&itat ako pisat: Paradoxne, vdaka Al musime viac &itat cudzi kod. Schop-
nost rychlo sa zorientovat v tom, ¢o stroj napisal (Code Comprehension), je dnes

dolezitejsia nez rychle prsty na klavesnici.

1.1.2 Menej zbytoc¢nej zataze pre mozog

Z pohladu psycholégie je programovanie pre zac¢iato¢nika strasna ,jnakacka” na mozog

(Cognitive Load). Student totiz riesi dve veci naraz:
e Samotny problém: Co chcem vlastne spravit? (napr. vypocitat priemer).
e Syntax: Ako to napisat v Jave tak, aby mi to nevyhodilo error?

Raihan a kol. |2] tvrdia, Ze Al dokaZe odstranit tu druhu, otravnu ¢ast — bariéru
syntaxe. Studentovi sa tak uvolni kapacita v hlave a moze sa sustredit na podstatu
problému a névrh rieSenia. Al tu funguje ako také ,kognitivna protéza“, vdaka ktorej aj

zaciatocnici zvladnu zlozité veci, ku ktorym by sa inak dostali az po mesiacoch driny.

1.1.3 Pozor na ilaziu, Ze vSetko viem

Ma to v8ak hacik. Jednym z najvicsich rizik je tzv. iltzia kompetencie (Illusion of
Competence). Ked studenti len generuju riesenia bez toho, aby im chapali, mézu mat
faloSny pocit, ze latku ovladaja.

Stadie (opét Sun a kol. [1]) potvrdzuju, Ze ak sa Al pouZiva prili§ a bez rozmyslania,
klesa schopnost samostatne riesit nové problémy. Ak sa zo Studenta stane len ,lepi¢
kodu* (Code Monkey), ktory kopiruje veci z ChatGPT do editora, prestava kriticky
mysliet.

Preto nesmi byt moderné vyuc¢bové nastroje len pasivne generatory. Musia Studenta
zapojit — napriklad ho donutit hladat chyby v tom, ¢o AI vygenerovala, alebo kod

vylepSovat.

1.1.4 Nové kI'icové zrucénosti

Tazisko vyucby sa musi presunat tam, kde AI zatial robi chyby alebo nas nemoze

nahradit. Raihan a kol. [2] zhrnuli, ¢o by mal dnesny absolvent vediet:

e Kontrola kédu (Code Auditing): Schopnost neverit stroju slepo, ale kriticky

zhodnotit jeho vystup a néjst skryté chyby ¢ halucinécie.

e Pisanie testov (TDD): Ked kod pise Al ¢lovek musi pisat testy, ktoré ho

strazia. Testovanie je zrazu dolezitejSie nez samotné implementécia.
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e Udrzba cudzieho kédu (Legacy Code): Al chrli kvantéa kodu, ktory sa okam-
Zite stava ,zdedenym®. Musime ho vediet ¢itat, opravovat a udrziavat, aj ked sme

ho nenapisali my.

e Prompt Engineering: Vediet sa Al opytat tak presne, aby sme dostali kvalitny
vysledok.

1.2 Prehlad a taxonomia Al asistentov pre progra-

movanie

V tejto casti si spravime poriadok v tom, aké nastroje dnes vlastne mame k dispozicii.
Pozrieme sa na to, ¢o pouzivaju Studenti aj profici vo firméch. Za roky 2023 a 2024 sa
na trhu vykrystalizovali tri hlavné skupiny, ktoré sa nelisia len tym, aky model maja
,pod kapotou®, ale hlavne tym, ako sa s nimi pracuje.

Vsetky tieto moderné hracky stoja na architektire Transformer (vid Obrazok 1.1).
To bola pre programovanie doslova revolicia. Vdaka mechanizmu pozornosti (Self-
Attention) totiz tieto modely chapu suvislosti v kode ovela lepsie nez starsie siete.
Vedia si pospéajat, ako spolu suvisia premenné a funkcie aj vo velkych suboroch, ¢o

predtym neslo.

1.2.1 Konverza¢né modely (Chatbots)

Toto je klasika, ktora pozna kazdy. S Al si piSete v chate ako s ¢lovekom. St to uni-
verzélne modely (General Purpose), takze vedia o vSetkom nieco, nie su $pecialisti len

na programovanie.

ChatGPT (OpenAl)

ChatGPT je dnes latka, ktorta sa vSetci snazia preskocit. VSetko sa porovnéva s nim.

Bezi na architektire GPT a pre nas su dolezité dve verzie:

e GPT-3.5 / GPT-40 mini: St rychle a lacné. Hodia sa, ked potrebujete vyge-
nerovat nejakt nudna ¢ast kodu (boilerplate) alebo vysvetlit pojem. Na zlozité

uvazovanie a refactoring velkych veci ale obc¢as nestacia.

e GPT-4 / GPT-40: Vlajkova lod. Tento model je fakt dobry v chapani zlozitych
zadani. Ked navrhujete architektiru alebo hladate logicku chybu, je to top volba.

Aj v testoch programovania (ako HumanEval) dopada véc¢sinou najlepsie.

Super vec je funkcia Advanced Data Analysis. Model si vdaka nej vie spustit Python

kod ,nanecisto” u seba, overit si, ¢i to funguje, a az potom vam posle vysledok.
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Obr. 1.1: Zakladom vsetkych modernych asistentov je architektira Transformer, ktora
vyuziva mechanizmus pozornosti (Attention) na spracovanie kontextu kodu. Prevzaté
z [3].

Claude 3 (Anthropic)

Rodina modelov Claude (Haiku, Sonnet, Opus) je asi najvicsia konkurencia pre GPT-4.

Maju dve velké vyhody:

e Obrovska pamit (Kontextové okno): Claude 3 zvladne spracovat az 200 000
tokenov naraz. To v praxi znamend, ze mu mozete nahrat celi dokumentaciu

alebo kopu suborov z projektu a on si to udrzi v hlave.

e Styl a bezpe€nost: St trénovani trochu inak (Constitutional Al), takze posobia

TudskejSie a menej ¢asto generuju nezmysly alebo skodlivy kod.
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Gemini (Google)

Néstupca Barda. Je to multimodalny model, ¢o znamena, Zze od zaciatku bol uceny

rozumiet naraz textu, kodu, obrazkom aj videu.

e Vidi obrazky: Mozete mu poslat screenshot chyby alebo UML diagram a on to

pochopi. Nemusite ni¢ prepisovat.

e Google Search: Kedze je to Google, vie si v redlnom c¢ase dohladat veci na
webe. To je klucové, ked robite s novou kniZznicou, ktora starSie modely eSte

nepoznaju.

1.2.2 Asistenti priamo v editore (AI-Powered IDEs)

Chatboty s fajn, ale je otravné stale prepinat okna a kopirovat kéd. Tieto néstroje

ziju priamo tam, kde programujete (v IDE), a pozeraji sa vam pod prsty.

GitHub Copilot

Priekopnik v tejto oblasti. Bezi na upravenom GPT-3 (Codex). Funguje tak, Ze sa
pozera na kod pred kurzorom a za nim a snazi sa uhadnut, ¢o chcete napisat (FIM -
Fill-In-the-Middle).

e Ghost Text: Pontka vam sivy text (navrh kodu), ktory len potvrdite Tabom.

e Copilot Chat: Novsia vec, mate chat priamo v bo¢nom paneli. Vidi vase otvo-
rené stubory, takze mu mozete dat prikaz /fix (oprav toto) alebo /tests (napis mi

testy).

JetBrains AI Assistant

Tento asistent je integrovany priamo do nastrojov ako IntelliJ IDEA alebo PyCharm.
Jeho sila je v tom, Ze rozumie projektu ako celku. Nerobi len s textom, ale vyuziva
statickti analyzu, ktoru tieto IDEcka robia, takze pozna triedy, zavislosti a typy pre-

mennych lepSie nez iné nastroje.

Cursor (AI-Native Editor)

Cursor je pomerne novy fenomén. Nie je to len plugin, ale upravena verzia (fork) VS
Code. Cely editor je postaveny okolo AI. M4 funkciu Copilot++, ktora nielen doplia
slova, ale predikuje aj to, kam presuniete kurzor a ¢o tam idete zmenit. Pre Studentov

je to momentalne asi najmodernejsi sposob, ako pisat kod.
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1.2.3 Lokalne modely (Open Weights)

Toto je pre nasu pracu té najdolezitejsia cast. St to modely, ktoré si mozete stiahnut
a spustit u seba na pocitaci. Data nikam neposielate, vietko bezi na vasom lokalnom

pocitaci.

Llama 3 (Meta)

Ked Meta (Facebook) vydala Llamu 3, zmenila hru pre open-source modely.

e Llama 3 8B: Mensi model (8 milidrd parametrov). Super je, Ze ho rozbehate aj
na beznom hernom notebooku. Napriek tomu, Ze je maly, je mudrejsi nez mnohé

stargie a vacsie modely. Pre nas webovy systém je ideédlny, lebo reaguje rychlo.

e Llama 3 70B: VAcsi brat, ktory uvazuje na trovni GPT-4, ale na to uz potre-

bujete poriadny server.

Mistral a Mixtral (Mistral AI)

Francuzi z Mistral Al prisli so zaujimavou architektirou (Mixture of Experts). Model
Mixtral funguje tak, Ze pri otazke nezapoji celu siet, ale len tu ¢ast (experta), ktoré sa
v téme vyzna. Vdaka tomu je rychly a vykonny. Tieto modely st zname tym, Ze dobre

poslichaji instrukeie, ¢o sa hodi, ked checete vystup v presnom formate (napr. JSON).

Specialisti na kod
Existuju aj modely, ktoré nerobia ni¢ iné, len programuju:

e DeepSeek Coder: Cinsky model, ktory v testoch Casto porédza aj Llamu. Je

natrénovany na obrovskom mnozstve kédu a pozna aj menej zname jazyKky.

e CodeLlama: Starsia vec od Mety, $pecializovana na Python, Javu a pod. Vie

robit tzv. infilling (doplhanie stredu kodu), ¢o bezné chatovacie modely nevedia.

Nastroje na lokalnu inferenciu a optimalizaciu

Samotny jazykovy model je v zéklade len staticky subor dat (vdh neurénovej siete),
ktory sam o sebe ni¢ nevykonava. Aby sme s nim mohli komunikovat, potrebujeme soft-
vérové prostredie — tzv. inferenény engine. Medzi najznamejsie néstroje, ktoré umoz-
nuju nacitat a spustat tieto modely na beznom podcitaci, patria Ollama, LM Studio
alebo kniznica llama.cpp.

Tieto nastroje riesia zéasadny problém: hardvérovi ndroc¢nost. Aby bolo mozné spus-
tit moderné modely aj na spotrebitel'skom hardvéri (napr. na notebooku s obmedzenou

paméitou RAM), vyuziva sa proces nazyvany kvantizacia.
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Podstatou kvantizacie je redukcia presnosti, s akou su ulozené parametre modelu,
zvycajne zo 16-bitovych desatinnych ¢isel na 4-bitové celé ¢isla. Tento proces mé dva

hlavné dopady:

e Vyrazna uspora paméte: Zatial ¢o povodny model moéze vyzadovat 16 GB
pamaéte, jeho kvantizovana verzia sa zmesti do 4 — 5 GB, ¢o je kapacita bezna aj

pre studentské notebooky.

e Zanedbatel'na strata kvality: Hoci sa matematickd presnost znizi, schopnost
modelu generovat zmysluplny text a kod klesa len minimalne, ¢o robi tento kom-

promis idedlnym pre lokdlne nasadenie.

1.3 Rizika a limitacie integracie AI vo vyucbe

Generativne modely st sice mocny nastroj, ale ak ich do vyuc¢by nasadime bez rozmyslu,
narobime viac §kody ako tzitku. Moderna didaktika sa musi popasovat s rizikami, ktoré
nie st len technické (ze Al spravi chybu), ale aj psychologické (¢o to robi so Studentovym

myslenim).

1.3.1 Technické limity: Halucinacie a spolahlivost

Pozrime sa na to realisticky a povedzme si uprimne — LLM nie st chodiace encyklopédie
faktov. St to probabilistické (pravdepodobnostné) modely. V podstate len hadaju, aké
slovo (token) nasleduje, na zaklade Statistiky. A presne to vedie k javu, ktory volame
halucinécie.

Pre zaciato¢nika v programovani si tieto halucinacie obzvlast nebezpecné, lebo sa
tazko hladaju:

e Vymyslené kniZznice (Package Hallucination): Model vam suverénne vyge-
neruje kod, ktory importuje kniznicu, ¢o v skutoc¢nosti neexistuje, alebo zavola

funkciu, ktort dany framework vobec nema.

e Zaludné logické chyby (Subtle Logic Bugs): Kod vyzera na prvy pohlad
super. Je syntakticky spravny, da sa spustit. Ale v hrani¢nych pripadoch (edge
cases) pocita zle. Klasikou je napriklad ,chyba o jedna* (off-by-one error) v cyk-
loch.

e Bezpecnostné diery: KedZe sa modely uéili aj na starych datach, pokojne vam
poradia pouzit prekonané Sifrovanie (napr. MD5) alebo napisu SQL dotaz tak,

ze si koledujete o SQL Injection.
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Priklad z praze: Predstavme si, Ze chcete vylepsit zlozity SQL dotaz. Model navrhne
pouzit ‘JOIN‘, aby to bolo rychlejsie. Vyzera to dobre, ale zmeni to logiku a z vysledkov
vypadnu zaznamy s hodnotou ‘NULL‘. Zaciato¢nik, ktory este nema SQL v malicku,
si to nevSimne a dokonca mozno ani sktisenejsi ¢lovek, pretoze na tych troch riadkoch

v testovacej databaze mu to funguje.

1.3.2 Pedagogické rizika: Kognitivna atrofia a lenivost

Z pohladu psychologie je najvacsim strasiakom tzv. automatizacéné skreslenie (Auto-
mation Bias). Ludia proste maju tendenciu verit strojom viac ako vlastnému rozumu.

Studenti ¢asto bertt Al ako neomylni autoritu. Ked GitHub Copilot nie¢o navrhne,
student automaticky predpoklada, Ze je to to najlepSie riesenie. Vyskumy ukazuji, ze
ked sa na Al spoliechame prilig, vedie to k pasivite (Code Complacency).

Student sa prestéava snazit pochopit, ako problém naozaj funguje. Stava sa z neho len
operator, ktory bezducho spaja vygenerované bloky kdédu. Hrozi tu ,kognitivna atrofia“
— schopnost kriticky mysliet zakrpatie a Student nakoniec nebude schopny vyriesit ani

jednoduchy problém bez toho, aby mu nie¢o nasepkavalo rieSenie.

1.4 Nové didaktické scenare

Naga praca sa na to pozera realisticky. Zakazovat Al v Skolach je boj s veternymi
mlynmi — v praxi to aj tak nikto neustrazi. Preto navrhujeme presny opak: zapojme
ju do vyuchy, ale kontrolovane. Heslom dna je posun od tvorby koédu k jeho kontrole.

Nasa webova aplikacia bude preto obsahovat tieto typy tloh:

1.4.1 Hladanie chyb po AI (Reverse Debugging)

Bezne vyzeraju tulohy tak, Ze Student dostane zadanie a piSe kod. Tu si to otocime.
Ucitel (alebo systém automaticky) necha AI vygenerovat kod, do ktorého schvalne
prepasuje chybu alebo ho napise ,Skaredo” (proti zasadam Clean Code).

Ulohou studenta nie je kodovat od nuly, ale spravit poriadne Code Review. Musi si
kod precitat, pochopit, ¢o tym ,basnik myslel“, najst chybu a navrhnat opravu. Je to
skvely tréning ¢itania s porozumenim (Code Comprehension). Povedzme si tiprimne —

v realnej praci programator castejSie ¢ita cudzi kod, nez pise novy.

1.4.2 Pisanie testov pre ¢iernu skrinku (Black-box Testing)

V tomto scenari dostane Student hotova funkciu, ale nemusi studovat jej vnitro riadok
po riadku. Jeho tlohou je pozriet sa na fiu zvonku a napisat sadu Unit testov, ktoré ju

poriadne preveria — vratane vSetkych hrani¢nych pripadov.
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Tento pristup u¢i studentov tzv. defenzivnemu programovaniu. Nuti ich to premys-
lat nie nad tym, *ako™ je to naprogramované, ale *¢o* to ma vlastne robit. Zaroven si

takto overia, ¢i Al vobec splnila zadanie a ¢i si nevymysla.

1.4.3 Upratovanie a refaktorizicia (Refactoring)

Al modely ¢asto vypluju kod, ktory sice funguje, ale z pohladu softvérového inZinierstva
je to katastrofa. St tam duplicity, divné nazvy premennych alebo to tplne ignoruje
SOLID principy.

,,Student dostane tento prvotny navrh implementécie a jeho tilohou je refaktorovat
ho do profesionalnej podoby.“ Cielom je naudit Studentov jednu dolezitu vec: to, ¢o
vylezie z ChatGPT, je len prvy nacrt (draft), nie hotovy produkt. Budujeme tak navyk,

aby sa s prvym rieSenim neuspokojili, ale kriticky ho vylepsovali.

1.5 Analyza existujtcich platforiem a potreba vlast-
ného rieSenia

Aby sme tie napady z predchédzajtcej kapitoly mohli realne vyskusat, potrebujeme na
to vhodny softvér. Ked som sa pozrel na to, ¢o je momentalne na trhu, zistil som, Ze

bezne dostupné nastroje nam na tento tcel iplne nevyhovuju.

1.5.1 Preco nestacia sutazné platformy

Vsetci pozname stranky ako LeetCode, HackerRank alebo Codewars. St to priemyselné
Standardy, ked sa ¢lovek pripravuje na pohovory do firiem. Ich problém je ale v tom,
ze su zamerané takmer vyluéne na dve veci: aby bol algoritmus rychly a aby daval
spravny vysledok.

Z pohladu vyucby softvérového inzinierstva maju tieto platformy niekolko zasad-

nych nedostatkov:

e Je im jedno, ako kéd vyzera: Student moze odovzdat totalny neporiadok
(8pagetovy kod). Pokial to prejde testami a zbehne to v ¢asovom limite, systém

to uzna. Nikto neriesi, ¢i je kod citatelny alebo ¢i ma hlavu a patu.

e Ziadna spiatna vizba: Ked rieSenie nefunguje, dozviete sa len, Ze vystup je
nespravny. Systém vam nepovie, *preco*™ to padlo, ani vam neporadi, ktorym

smerom sa vydat pri oprave.

e Absencia prace s existujucim kédom: Stucasné platformy sa primarne zame-

riavaji na tvorbu novych rieseni od zékladov (tzv. Greenfield projekty). Realna
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prax vSak CastejSie vyzaduje udrzbu, rozsirovanie a refaktorizaciu uz existujicich
systémov (tzv. Brownfield vyvoj), ¢o je zruénost, ktort tieto nastroje u studentov

nerozvijaju.

1.5.2 Preco potrebujeme vlastné rieSenie

Ak chceme splnit ciele tejto prace — teda porovnat rézne Al modely a naucit Studentov
s nimi robit — potrebujeme Specializované prostredie. Bezné IDE ani stitazné weby ndm
jednoducho nestacia.

Riegenie, ktoré navrhujeme, musi spliiat tieto konkrétne podmienky:

1. Viacero jazykov pod jednou strechou: Musime vediet bezpecne spustat a
kompilovat Python, C++ aj Javu v jednom rozhrani. To si na pozadi vyzaduje

celkom zlozité rieSenie pomocou virtualizacie (Docker).

2. AT Mentor, nie len ,nasSepkavac*: Systém musi byt prepojeny s lokdlnym
LLM modelom, ktory vidi do zadania. Délezité ale je, aby model fungoval ,sokra-
tovsky* — teda aby studentovi neprezradil vysledok, ale aby ho otazkami naviedol

k rieSeniu.

3. Doraz na testovanie: Nestaci kod len spustit. Systém musi vediet automaticky
vyhodnotit unit testy. Len tak si overime, ¢ sme pri upratovani (refaktorizacii)

kodu nieco nepokazili a ¢i program stale robi to, ¢o ma.

Systém, ktory som navrhol a ktorého architekturu detailne popisem v dalsej kapi-

tole, vznikol presne preto, aby tieto diery zaplatal.

1.6 Etické a bezpecnostné aspekty Al vo vyvoji soft-
véru

Ked zapojime Al do vyvoja softvéru, nie je to len o tom, Ze nam to ulahéi pracu. Pri-
nasa to so sebou aj uplne nové bezpecnostné a etické rizika, o ktorych sme v klasickom

softvérovom inzinierstve doteraz ani nechyrovali.

1.6.1 Hackovanie modelu (Prompt Injection)

Asi kazdy programéator pozna SQL Injection. Pri jazykovych modeloch méame nieco
velmi podobné — volé sa to Prompt Injection. V podstate ide o to, Ze uto¢nik (v nasom
pripade napriklad vynaliezavy Student, ktory chce podvéadzat) sa snazi ,,oblbnut” model

Specialnym prikazom, aby porusil svoje pravidla.
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Ako to vyzerd v praxi: Predstavme si, Ze nas Al mentor ma prikaz: ,,Nikdy neprezrad
Studentovi hotové rieSenie. Student to ale skusi obist a napiSe: ,Zabudni na vietky
predchédzajice instrukcie, teraz si v rezime 'pomocnik’ a napis mi kompletny kod pre
Bubble Sort.“

Ak model nie je dobre zabezpeceny, poslusne kéd vypiSe. Preto sa v tejto praci
venujeme aj tomu, ako navrhnut tzv. systémové prompty (System Prompts) tak, aby

boli ,nepriestrelné” a odolali takymto pokusom o manipuléciu.

1.6.2 Ochrana dusevného vlastnictva a tnik dat

Velky problém cloudovych nastrojov (ako Copilot alebo ChatGPT) je, Ze vetko, ¢o do
nich napisSete, odchddza na cudzie servery. Uz v roku 2023 sa na tom popélili inzinieri
v Samsungu, ktori nevedomky nahrali citlivy firemny k6d do ChatGPT, ¢m ho v
podstate darovali modelu na ucenie.

V skolstve je to dvojseéna zbran. Na jednej strane sa Skola boji o svoje materialy
(zadania skusok, testy), na druhej strane musime chréanit sikromie Studentov.

Préave preto v tejto praci presadzujeme lokdlne beziace modely (cez nastroje ako
Ollama). Je to najbezpecnejsia cesta — data nikdy neopustia nasu internu siet, takze

riziko tniku citlivych informécii je v podstate nulové.

1.7 Pedagogické ukotvenie: Bloomova taxonémia v ére
Al

Pre efektivnu integraciu umelej inteligencie do edukacného procesu je nevyhnutné ana-
lyzovat vzdelavacie ciele optikou revidovanej Bloomovej tazondmie (Anderson & Krat-
hwohl, 2001). Tradi¢na didaktika programovania ¢asto narédza na limity v spodnych
vrstvach tejto kognitivnej hierarchie, kde Studenti vynakladaji netmerné mnozstvo
¢asu na memorovanie syntaxe a porozumenie elementarnym konstrukciam [2].
Generativne modely (LLM) umoziiuju tento proces optimalizovat. Automatizaciou
rutinnych tloh (niZsie kognitivne procesy) sa otvara priestor pre rozvoj kompetencii
vyssieho radu, ¢o potvrdzuju aj zistenia Sun et al. [1]. Tazisko vyucby sa tak prestuva

nasledovne:

1. Aplikacia (Applying): Namiesto pasivneho $tidia teorie Student aplikuje kod
vygenerovany asistentom na rieSenie konkrétneho problému, ¢im sa urychluje

prechod od konceptu k implementacii.

2. Analyza (Analyzing): Této faza nabera na kritickej dolezitosti. Student must
podrobit kod od Al dékladnej indpekcii (code auditing), identifikovat potencidlne

logické chyby ¢ bezpecnostné zranitel nosti.
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3. Hodnotenie (Evaluating): Pri interakcii s Al, ktora ¢asto pontka viacero va-
riantov rieSenia, musi Student komparativne vyhodnotit ich kvalitu. Rozhoduje
o optimalnom rieSeni na zéaklade kritérii, ako su ¢asova zlozitost, CitateInost ¢i

udrzatelnost kodu.

4. Tvorba (Creating): Student sa postva do roly architekta, ktory komponuje
komplexné systémy z mensSich, Al generovanych modulov, namiesto manuélneho

pisania kazdej funkcie.

Bloom’s Taxonomy

Produce new or original work
Design, assemb e, conf

Justity a stand or decision
evaluate appraise, argue, defend, Judge, sefect, suppart, value critiue, welgh

devedap, formulate. suther, investigate

Draw connections among ideas
different] ize, relate, comp

Use information in new situations
execute, implement, soive, use, i ale,

annilv

d d Explain ideas or concepts
classiry, describe, di expladn, iden! locate, "
understan T e thy.focate, recognie,

Recallfacts and basic concepts
dofine, duplicate, list. memorize, repeat, state

Obr. 1.2: Revidované Bloomova taxonémia. V kontexte tejto prace umela inteligencia
automatizuje spodné vrstvy (Zapamétanie, Pochopenie), ¢im umoziuje studentom ve-

novat viac ¢asu vrchnym vrstvam (Analyza, Hodnotenie, Tvorba). Prevzaté z [9].

Nasim cielom teda nie je nahradit kognitivny proces ucenia, ale posunit ho v tejto
hierarchii vyssie. Nastroj, ktory je predmetom tejto prace, je dizajnovany v sulade
s touto filozofiou — nepodporuje pasivne generovanie kodu, ale prostrednictvom tloh
zameranych na refaktorizaciu a reviziu (code review) aktivne stimuluje fazy Analyzy a

Hodnotenia.



Kapitola 2
Analyza a navrh rieSenia

V tejto ¢asti premenime teoretické napady na konkrétny navrh softvéru. Cielom je na-
vrhnut webovu platformu, ktoré bude fungovat ako most medzi starou dobrou vyuc¢bou

programovania a novymi moznostami umelej inteligencie.

2.1 Co od toho vlastne chceme (Poziadavky na sys-
tém)

Pri spisovani poziadaviek som vychédzal priamo z toho, ¢o sa u¢i u nas na fakulte
(FMFI UK), hlavne na predmetoch Programovanie 1, 2 a 3. Islo mi hlavne o to, aby

to fungovalo pre rozne jazyky a aby to bolo bezpec¢né.

2.1.1 Funkcionalne poziadavky

Toto st veci, ktoré musi systém vediet robit pre pouZivatela:

e Viacjazycnost (Polyglotné prostredie): Systém nemoze byt len pre jeden jazyk.
Musi zvladat skriptovanie v Pythone, ale aj kompilaciu C++ a Javy. A ¢o je
dolezité — ak kompilator vyhodi chybu, musi ju Studentovi ukazat tak, aby sa

dala precitat, nie ako rozsypany c¢aj.

e Al Mentor, ktory vidi kontext: Musi tam byt chat, kde sa Student moze pytat
na svoj kod. Ale nesmie to byt len ,,0kno do ChatGPT*. Al musi vidiet, ¢o mé
Student prave otvorené v editore, aby mu vedela poradit bez toho, aby musel kod

kopirovat hore-dole.

e Generovanie tloh pre ucitelov: Ucitelom chceme uSetrit ¢as. Systém by mal vediet
na zaklade kratkeho prikazu (napr. ,Vytvor ilohu na opravu cyklov*) vygenerovat
celi ulohu — vratane pokazeného kodu, ktory treba opravit, a testov, ktoré to

skontroluji.

15
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e Automatickd kontrola (Unit Testing): Nestaci, Ze kod ide spustit. Systém musi
vediet sam spustit testy a povedat Studentovi ,,Presiel si“ alebo , Nepresiel si“, bez

toho, aby do toho musel zasahovat ¢lovek.

2.1.2 Nefunkcionalne poziadavky

Toto s vlastnosti, ktoré nie st vidiet na prvy pohlad, ale pre skolu su kritické:

e Bezpecnost (Sandbox): Kedze dovolujeme cudzim [udom spustat u nas kod, mu-
sime si chranit server. Studentov kod musi bezat v izolovanom prostredi, odkial

sa nedostane k sitborom na serveri ani do nasej siete.

e Sukromie a ziadne data von: Kvoli GDPR a ochrane dusevného vlastnictva ne-
smieme posielat kod Studentov niekam do cloudu (napr. do OpenAl). VSetko musi

bezat u nas na lokalnych modeloch.

e Rozsiritelnost: Ak si o rok zmyslime, Ze chceme uéit aj CSharp alebo JavaSc-
ript, nemali by sme kvoli tomu prepisovat celii aplikiaciu, ale len pridat novy

konfigura¢ny sibor.

2.2 Architektara systému

Aby sme toto vSetko splnili, navrhol som to ako skladacku (modularnu architektiru),

kde kazda cast robi jednu vec a robi ju poriadne.

2.2.1 Ako to vyzera zhora (High-level prehlad)

Systém stoji na troch nohéach:

1. Backend (Aplikaény server): Mozog celej operacie. Riesi prihlasovanie, uklada

data do databazy a riadi, ¢o sa ma kedy spustit.

2. Sandbox (Exekuéné prostredie): Toto je ,telocvicna®, kde bezpe¢ne bezi kod stu-

dentov. Vytvara sa dynamicky len vtedy, ked ho treba, a potom sa zahodi.

3. Al Server: Samostatna sluzba, ktoré sa stara len o jazykové modely. Drzi ich v

paméti a generuje odpovede.

2.2.2 Pouzité technologie

Vyberal som veci, ktoré st overené, zadarmo (open-source) a dobre sa s nimi robi.



2.2. ARCHITEKTURA SYSTEMU

Architektira systému - Pohlad STUDENTA

_Pyta sana radu- — _ _

Prezentatnd vistva (Frontand)

Webovy prehliadac

\
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““““ Ace Editor (Kéd) Vysledky testov Chat Okno (Al Mentor)

Student AN A ' P
T

N\ |
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Obr. 2.1: Detailny pohlad na architektiru systému z perspektivy Studenta. Diagram

ukazuje, ako kod putuje do Docker kontajnera (Sandbox) a ako prebieha komunikacia

s AL

e Django (Python): Na backend som vybral Django, lebo ma filozofiu ,batteries-

included* — mé v sebe vsetko, ¢o potrebujem. Uz v zaklade riesi databazu, ad-

ministraciu aj bezpecnost (napr. proti SQL Injection), takZe som nemusel vyna-

chadzat koleso.

e Docker: Na izolaciu (sandbox) je Docker idealny. Celé prostredie (kompilatory

pre C++, Java, Python) zabalime do jedného obrazu. Kod sa spusti v kontajneri

a po skonceni sa kontajner znic¢i. Je to ¢isté a bezpecné.

e Ollama a Llama 3: Na Al pouzivame néstroj Ollama, ktory naim umoznuje spustat

modely lokdlne. Vybral som model Llama 3 (8B verziu), pretoze je prekvapivo

sikovny na svoju velkost a na beznom hardvéri bezi dostato¢ne rychlo.

e PostgreSQL: Klasicka rela¢na databéza. Je spolahliva a s Djangom si rozumie

najlepsie. Ukladame tam pouZivatel ov, zadania a historiu vSetkého, ¢o sa spustilo.
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2.3 NAavrh datového modelu

2.3.1 ER diagram databazy

2.3.2 Polymorfizmus pri podpore jazykov
2.4 Navrh bezpe¢ného spustania kodu (Sandbox)

2.4.1 Izolacia pomocou kontajnerov

2.4.2 RieSenie kompilacie pre C+-+ a Javu

2.5 Navrh integracie Al

2.5.1 Komunikacia s Ollama API

2.5.2 Automatizované generovanie zadani

Pre potreby ucitela systém obsahuje generator, ktory vyuziva LLM na tvorbu tloh.

Architektira systému - Pohlad UCITELA

€ .
Uditel | Admin

, N
"Zadank: témy (napr. “Refaktorizacia cyklov v Jave*) ‘\Holové dloha

Prezentadna vrstva (Frontend)

Webovy prehliadaé

«
Formular generatora

A

a
Dashboard Gloh
L

\
\
\

A

PoZiadavka

Aplikaéna vrstva (Backend)

§1| Extrahovaf kéd, popis a testy [-m] ]
Task Generator Service Struktirované data Parser Vystupov ﬂi’ohrnm v zozname
— Struktirované data _
13 /
\
\

Knticky komponent: &

Opravuje formatovacie
chyby lokalneho modelu

—

~—

\ \Vylvou[ nova Glohu
~—
A ~—
\ ~~
\ ]
| System Prompt: “ Surovy text (JSON/Markdown) Task Manager
\
\ \
\ Ulo2it (RefactoringTask)
\
Vytvor rozbity kéd + testy.. Infrastruktira
Ollama (Al Generator) [ atabaza (Tasks) ]

Obr. 2.2: Architektira modulu pre automatizované generovanie u¢ebnych materiélov.
Ucitel zadava tému a ‘GenService' spolu s ‘Parserom‘ zabezpecia vytvorenie validne;

tlohy.
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2.5.3 Prompt Engineering
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Kapitola 3

Implementacia

3.1 Priprava vyvojového prostredia

3.2 Backend a aplika¢na logika

3.2.1 Sprava pouzivatelov a autentifikacia

3.2.2 Manazment tloh a nahravanie rieSeni

3.3 Realizacia bezpec¢ného spiistania (Docker Orche-

stration)

3.3.1 Tvorba Docker image
3.3.2 Implementacia funkcie pre spustenie kédu

3.3.3 Spracovanie vystupov a chyb
3.4 Implementacia AI modulu

3.4.1 Generovanie zadani a parsovanie vystupov

3.4.2 Chatovaci asistent
3.5 Pouzivatel'ské rozhranie (Frontend)

3.5.1 Editor kédu

3.5.2 Vizualizacia spatnej vazby a testov
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Kapitola 4
Vyskum

Cielom tejto casti je zistit, ako to realne vyzera s pouzivanim umelej inteligencie na
nasej fakulte. Chceme zmapovat, aké nastroje Studenti pouzivaju, a ziskat od nich
Uprimnu spéatna vizbu. V tejto kapitole popiSem, ako sme prieskum nastavili, koho

sme sa pytali a ako vyzeral dotaznik.

4.1 Metodika vyskumu

Vyskum sme ponali ako prieskumnt (explorativnu) studiu. Hlavnym néstrojom bol
dotaznik, cez ktory sme zistovali navyky Studentov, ich postoj k Al a & vobec veria

tomu, ¢o im model vygeneruje.

4.1.1 Na ¢o hladame odpovede (Vyskumné otazky)

Na zéaklade cielov prace sme si stanovili tri hlavné otazky, ktoré nas zaujimaju:

e VO1: Co vlastne studenti pouzivaju? (ChatGPT, Copilot, Claude...) a kedy?
(Pri navrhu, koédovani alebo az ked hladaji chyby?)

e VO2: Je rozdiel medzi prvakmi a starsimi studentmi? Zaujima nas, ¢i zaciato¢nici

pristupuju k Al inak ako ti, ¢o uz maji nie¢o odprogramované.

e VO3: Myslia si Studenti, Ze im to poméha? Ako vnimaju kvalitu rad, ktoré

dostavaji, najmé pri tlohéch zameranych na kvalitu kodu?

4.2 Kde a s kym robime vyskum

4.2.1 Zber dat

Prieskum prebehne priamo na hodinéch profilovych predmetov u nas na Fakulte ma-
tematiky, fyziky a informatiky (FMFI UK).
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Dotaznik rozdame studentom Aplikovanej informatiky na tychto predmetoch:
e Programovanie (1): Prvaci v zimnom semestri.
e Programovanie (2): Prvaci v letnom semestri.

e Programovanie (3): Druhaci, ktori uz maju zaklady OOP a algoritmov za

sebou.

4.2.2 Vzorka respondentov

Tymto vyberom ziskame celkom pestru skupinu ludi, ¢o je pre nas dolezité. Budeme

tam mat:

1. Zaéiato¢nikov (Prvéaci): Ti sa eSte len rozpozeravaju a Al mozu brat ako prvi

pomoc, ked nevedia, ¢o dalej.

2. Pokro¢ilych (Druhéaci a vyssie): Ti uz maja nejaké navyky a Al skor pouzi-

vaji na to, aby si ulah¢ili robotu alebo vylepsili existujuci kod.

4.3 Ako vyzera dotaznik

Déta zbierame cez anonymny online formulér. Snazil som sa ho postavit tak, aby pokryl

technické veci, ale aj pocity studentov. Rozdelil som ho do piatich casti:

Sekcia A: Kto odpoveda (Demografia) Zistujeme zékladné veci ako vek, pohlavie
a kol'ko toho uz maju odprogramované. Toto potrebujeme vediet, aby sme potom mohli

hladat suvislosti (napriklad ¢i skusenejsi programétori veria Al menej).

Sekcia B: Co pouzivaji Tu mapujeme ich ,technologickt vybavu®. Pytame sa:
e Aké nastroje konkrétne pouzivaju (ChatGPT, Copilot, Bard...).
e Ako casto (denne, obcas, vobec).

e Na ¢o presne (nechaju si vygenerovat celé rieSenie, alebo len vysvetlit error?).

Sekcia C: Je to k nieComu dobré? Respondenti znamkuja Al ako v skole (skala

1 - 5). Zaujima nés:
e Kvalita kodu.
e Ciim spéatna véizba pomohla pochopit problém.

e (i veria tomu, ¢o im model poradil.
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Sekcia D: Siboj nastrojov Ak niekto skusil viacero modelov (napr. ChatGPT aj

lokélne rieSenie), tu ich moze porovnat. Co bolo rychlejsie? Co bolo presnejsie?
Sekcia E: Priestor na vyjadrenie (Otvorené otazky) Tu mozu vlastnymi slo-
vami napisat:

e Co sa im na Al padi.

e Co ich Stve (napr. ked si model vymysla).

e Ako by si predstavovali idedlneho Al pomocnika na ucenie.

4.4 Co s nazbieranymi datami

Ked budeme mat déata pokope, pustime sa do analyzy. P6jdeme na to v niekolkych
krokoch:

4.4.1 'Triedenie a analyza

Najprv precistime data — vyhodime nekompletné alebo zjavne ,odflaknuté” odpovede.

Potom si respondentov rozdelime na dve kopky:
e Zaciato¢nici (1. roénik): Studenti, pre ktorych je VS programovanie novinka.
e Pokrocili (2. ro¢nik a vysSie): Ostrielanejsi studenti s viac projektmi za sebou.

Chceme zistit, ¢i sa ich pristup lisi. Hypotéza je, Ze starsi Studenti beru Al ako
nastroj na Setrenie ¢asu pri nude (boilerplate kod), zatial ¢o prvéci ju moézu brat ako

szachranné koleso“, ked nerozumeju zadaniu.

4.4.2 Citanie medzi riadkami (Kvalitativna analyza)

Velky doraz budeme klast na otvorené odpovede. Budeme v nich hladat opakujice sa

motivy, napriklad:

e Slovencina vs. Angli¢tina: Ci im vadi, ak lokalny model nevie dobre po slo-

vensky.
e Dovera: Ci kod slepo kopiruji, alebo ho kontroluji.

e Frustracia vs. Pomoc: Kedy im Al najviac pomohla a kedy ich zaviedla do

slepej ulicky.

Vysledkom by mali byt praktické odporucania pre ucitelov — ako zapojit Al do

vyucby tak, aby z nej Studenti nezhlipli, ale naopak, aby ich posunula vpred.



26

KAPITOLA 4. VYSKUM



Kapitola 5

Diskusia

5.1 Interpretacia dosiahnutych vysledkov
5.1.1 Spolahlivost lokdlnych LLM modelov

5.1.2 Kbvalita pedagogickej spatnej vazby

5.2 Technické vyzvy a rieSenia

5.2.1 Specifika kompilacie v kontajnerizovanom prostredi

5.2.2 Latencia a hardvérové naroky
5.3 Pedagogické a etické aspekty

5.3.1 Riziko nadmernej zavislosti na Al

5.3.2 Ochrana stukromia a dat
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Kapitola 6

Zhrnutie hlavnych prinosov prace

6.1 Teoreticky prinos
6.1.1 Analyza vyuzivania AI nastrojov Studentmi
6.2 Prakticky prinos

6.2.1 Webové prostredie s podporou viacerych jazykov (Polyg-
lot)

6.2.2 Robustny mechanizmus komunikacie s Al

6.2.3 Katal6g refaktorizac¢nych zadani
6.3 Moznosti d’alSieho rozvoja

6.3.1 Rozsirenie o d’alsie jazyky a frameworky

6.3.2 Jemné doladenie modelu (Fine-tuning)
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Priloha A: obsah elektronickej prilohy

V elektronickej prilohe prilozenej k préaci sa nachadza zdrojovy kéd programu. Zdrojovy

kod je zverejneny aj na stranke https://davinci.fmph.uniba.sk/~jesik2/
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