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Abstrakt

Tato praca sa zameriava na vizualizaciu Stvorrozmernych fraktélov v trojrozmernom
priestore, pri¢om Stvrti dimenziu reprezentuje farba. Tieto fraktaly st definované nad
hyperkomplexnymi ¢islami, kvaternionmi. V préaci sme analyzovali teoretické zaklady
fraktalov, kvaterniénov a rozne zobrazovacie techniky. Navrhli a implementovali sme
softvérovy systém, ktory vyuziva moderné technologie. Vyvinuty softvérovy systém
poskytuje pouzivatelom intuitivne rozhranie na manipulaciu s fraktalmi, vyber zobra-

zovacej techniky, ovladanie kamery a renderovanie obrazkov vo vysokom rozliSeni.

KTacové slova: fraktal, kvaternion, Stvrta dimenzia, farba
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Abstract

This work focuses on the visualization of four-dimensional fractals in three-dimensional
space, with the fourth dimension represented by color. These fractals are defined over
hypercomplex numbers, quaternions. In this paper we have analyzed the theoretical
foundations of fractals, quaternions and various imaging techniques. We have desig-
ned and implemented a software system that uses modern technology. The developed
software system provides users with an intuitive interface for manipulating fractals,
selecting imaging techniques, controlling the camera, and rendering high-resolution

images.

Keywords: fractal, quaternion, fourth dimension, colour
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Uvod

Vo svete, kde technologia neustale prekracuje hranice mozného, sa otvaraji nové obzory
pre prieskum doteraz len malo preskimanych oblasti. Jednou z takychto oblasti st
fraktaly, nekonecné a tichvatné struktiry, ktoré stoja na rozmedzi medzi chaotickym a
usporiadanym spravanim. Tieto struktury, povazované nielen za matematické zahady,
ale aj za umelecké diela, maju obrovsky potencidl v mnohych vedeckych oblastiach.
Vdaka rychlemu vyvoju modernych technik vizualizécie a hardvérovych rieSeni mozeme
tieto objekty nielen presne analyzovat, ale aj vizualne preskiimavat, ¢o otvara nové
moznosti pre ich vyskum a praktické vyuzitie.

Cielom tejto prace je vyvinut sofistikovany softvérovy systém na vizualizaciu Stvor-
rozmernych fraktélov. Vdaka reprezentécii stvrtej dimenzie ako farby, mozeme zobra-
zit Stvorrozmerné fraktaly v 3D prostredi. Systém pouziva rozne techniky pocitacove;j
grafiky a vizualiza¢nych algoritmov na dosiahnutie interaktivnych zobrazeni. Systém
je navrhnuty tak, aby umoznil uZzivatelom nielen pasivne pozorovanie, ale aj aktivne
experimentovanie s roznymi parametrami fraktalov, ¢o podporuje hlbsie pochopenie
ich struktury.

Tato praca je Strukturovana do niekolkych klucovych kapitol. Prva kapitola posky-
tuje prehlad teoretickych zékladov fraktalov a hyperkomplexnych ¢isel, kvaternionov,
pomocou ktorych sa tieto fraktaly definované v Stvrtej dimenzii. Druha kapitola sa
podrobne venuje ndvrhu a architektire vizualiza¢ného softvéru. V tretej kapitole pre-
chadzame implementéciu systému, technik zobrazovania a réznych optimalizacii. Stvrta
kapitola sa zameriava na porovnanie zobrazovacich technik a diskusiu o vysledkoch, ku
ktorym sme v priebehu prace dospeli.

Verime, Ze tato praca prispeje k rozsireniu poznatkov v oblasti vizualizacie viacroz-
mernych fraktalov a poskytne hodnotny néstroj pre vyskumnikov a nadSencov, ktori

sa zaujimaju o tuto fascinujucu oblast.
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Kapitola 1

Vychodiska prace

1.1 Fraktaly

Fraktély, oznacené pocas rozvoja tedrie chaosu ako “matematické monstra”, sa neko-
necne detailné matematické struktury, ktoré maju detaily na Tubovolne malych mier-
kach. Nedaju sa popisat pomocou klasickych geometrickych terminov, pretoze ich tvary
st nepravidelné a zvycajne vykazuju ur¢ita mieru sebapodobnosti [5]. Je mozné ich po-
pisat pomocou iterativnych metod, ktoré spocivaju v opakovanom aplikovani rovnakych
matematickych pravidiel na vysledky predchadzajicich krokov.

Napriek tomu, ze boli pévodne povazované za “matematické monstra”, su vlast-
nosti fraktalov v skuto¢nosti typické pre prirodu a stali sa nevyhnutnou stacastou pri

modelovani a simulécii prirodnych javov [16].

1.1.1 Mandelbrotova mnozina

Mandelbrotova mnozina je pomenovana po matematikovi Benoitovi Mandelbrotovi a
je to jeden z najznamejsich fraktélov, ktory vzniké iterovanim komplexnej kvadratickej

funkcie. Definicia Mandelbrotovej mnoziny je urcené rovnicou
2
“ntl = 2 + ¢,

kde z a ¢ st komplexné ¢isla so za¢inajicim ¢lenom postupnosti zg = 0 + 0i. Kom-
plexné ¢islo ¢ patri do mnoziny, ak velkost postupnosti z, konverguje [5]. Vizualizaciu

Mandelbrotovej mnoziny mézeme vidiet na obrazku 1.1.

1.1.2 Julilna mnoZina

Rovnako ako Mandelbrotova mnozina, definicia Juliinej mnoziny je definovana iterova-

nim rovnakej komplexnej kvadratickej funkcie
Znt1 = 2+ €,

3
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Obr. 1.1: Mandelbrotova mnozina. Komplexné ¢isla ¢ sii reprezentované bodmi v rovine,

¢ierna farba znazornuje body patriace do mnoziny.

kde z a ¢ st komplexné ¢isla s Tubovolnou konstatou ¢. Komplexné ¢islo z patri do mno-
ziny, ak velkost postupnosti z, konverguje [5]. Vizualizaciu Juliinej mnoziny mozeme

vidiet na obrazku 1.2.

1.2 Kvaterniony

Kvaterniony su hyperkomplexné ¢isla skladajice sa zo Styroch komponentov. Kvater-

nion ¢ bol prvykrat definovany Williamom Rowanom Hamiltonom ako
q=a+bi+cj+dk,

kde a,b,c,d patria do mnoziny redlnych c¢isel, a zlozky 1,7, k st zékladné jednotky

kvaternionov s tymito vlastnostami:

tymto Hamilton zaviedol novy matematicky koncept rozsirujici tradicné komplexné

¢isla do 8tvorrozmerného priestoru [15].

1.2.1 Operacie s kvaternionmi

Nasledujtice operacie kvaternionov st podrobne definované pomocou algebraickych ope-

réciif [15].



1.2. KVATERNIONY )

Obr. 1.2: Juliina mnozina. Komplexné ¢isla z su reprezentované bodmi v rovine, ¢ierna

farba znazornuje body patriace do mnoziny pre ¢ = —0.8 4+ 0.1562.

Kvaterninoy sa s¢itavaju a od¢itavajua po zlozkach, pre kvateriony ¢ a ¢’ je definované

sCitanie a odcéitanie ako

g+q =(a+d)+O+b)i+ (c+)j+ (d+d)k,
q—q¢=(a—d)+b-=0)i+(c—)j+ (d—d)k.

Nésobenie sa prevadza distributivnym zédkonom, pricom sa vyuzivaju pravidla na-
sobenia zloZiek i, j, k. Nasobenie kvaterionov nie je komutativne, pre kvateriony ¢ a ¢’

je definované ako

q¢ = (ad’ — b — e — dd")
+ (ab' + ba’' + cd' — dc')i
+ (ac = bd' + ca’ + db')j
+ (ad' + bc’ — cb' + da')k.

Konjugat alebo doplnok kvaternionu g = a+bi+cj+dk je definovany ako kvaternion
¢ =a—bi —cj—dk.

Velkost alebo norma kvaternionu je definovana ako

lq| = Va? + b2 + c2 + d2.

Inverzny kvaternion ¢~! pre nenulovy kvaternion ¢ je definovany ako

*

-1 q
¢ =1
|q]?
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1.2.2 Kvaterniony a fraktaly

Fraktély vznikajuce iterovanim komplexnych rovnic, ako st Mandelbrotova mnozina ¢i
Juliina mnozina, mézeme rozsirit nahradenim komplexnych ¢&isel kvaternionmi. Tento
postup rozsiruje dvojrozmerné fraktaly na Stvorrozmerné. Vysledné fraktaly nemozu
byt priamo graficky reprezentované, nakolko Iudské vnimanie je obmedzené na tri

dimenzie, a preto musi byt $tvrta dimenzia reprezentovana inym spésobom |[7].

1.3 Osvetlenie

Pri vizualizacii trojrozmernych struktir, mozeme vyuzit osvetlenie na zvyraznenie a
lepgie pochopenie tretej dimenzie (hibky) a priestorového usporiadania. Osvetlenie si-
muluje interakciu svetla s povrchom Struktury a vytvara realistickejsi vizualny dojem.
Utlm svetla popisuje jav, kedy intenzita svetla klesa so vzdialenostou od zdroja, vdaka
tomu podsobia vzdialenejsie casti Struktury tmavsie. NajbeznejSie sa pouziva kvadra-

ticky model atlmu, ktory je matematicky vyjadreny rovnicou

" l14a-d+b-d?

1(d)

kde I(d) ozna¢uje intenzitu svetla vo vzdialenosti d od zdroja, Iy je po¢iato¢na intenzita

svetla a koeficienty a a b ur¢uju mieru linedrneho a kvadratického utlmu [2].

1.4 Reprezentacia viacrozmernych dat

Viacrozmerné data mozeme reprezentovat v 3D priestore, pricom rozmery nad tretou
dimenziou zobrazime alternativnymi sposobmi. Jednym zo sposobov je pouzitie farby,
kde st dalsie dimenzie mapované na viditelné farebné spektrum, teda na vinové dlzky,
ktoré st vnimané Iudskym okom.

Transforméacia vlnovych dizok na RGB farebny model je kI'i¢ové pre presni vizuali-
zaciu. Je nevyhnutné, aby tato premena bola dostato¢ne presna, aby sme ¢o najlepsie
napodobnili realitu a vnimanie farieb Tudskym okom.

Algoritmus tejto transformécie zahina aditivne mieSanie zédkladnych farebnych zlo-
ziek, Cervenej, zelenej a modrej, na dosiahnutie réznych odtienov. Tento pristup vy-
uziva linearne aproximacie CIE farebnych funkcii zobrazenych na obrazku 1.3, ktoré
zabezpecuju efektivnu transforméciu farebnych hodnot [14]. KedZe su tieto funkcie ap-
roximované, vysledky nie st tplne presné, ale st dostatocne blizke realnym farbam a
pouzitelné v readlnom case. Tato vlastnost je kluc¢ova pri spracovani dat, kde je rychlost

nevyhnutné.
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Obr. 1.3: Linearne aproximacie CIE farebnych funkeii [14].

1.5 Kamera v 3D priestore

Manipulacia s kamerou v 3D priestore je kIti¢ovym prvkom pri tvorbe vizualizaénych
a interaktivnych aplikacii, pretoze umoznuje pouzivatelom efektivnejsie vnimat troj-
rozmerny priestor aj napriek jeho zobrazeniu na dvojrozmernom displeji. Kamera je v
3D priestore definovana bodom, kde sa nachadza, a tromi vektormi, ktoré urcuja jej
orientaciu: front vektor urcuje smer, kam sa kamera pozera, up vektor definuje smer
nahor, right vektor urcuje smer vpravo.

Ovladanie rotéacie kamery je zabezpecené pomocou Eulerovych uhlov: yaw, pitch a
roll. Yaw zabezpecuje rotaciu kamery okolo vertikalnej osi y, pitch riadi rotaciu okolo

horizontalnej osi = a roll kontroluje rotaciu okolo osi z [6].

1.6 Volumetrické zobrazovanie

Volumetrické zobrazovanie je technika vyuzivana na vizualizaciu objemovych dat, ktoré
obsahuji informécie nielen o povrchu objektov, ale aj o ich vnitornych Struktarach
[8]. Tato metdéda nam umoziuje pozerat sa na objekty inym sposobom, Studovat ich
vnutornu charakteristiku a poskytuje pohl'ad na vnutorné detaily. Pri pouziti je dolezité

mat reprezenticiu dat vo forme objemovych prvkov, voxelov.

1.6.1 Voxel

Voxel je ekvivalentom pixelu v 2D obrazoch a predstavuje maly elementarny objem v
priestore. Kazdy voxel je definovany svojimi siradnicami x,y, z a moze mat priradené

dalsie hodnoty opisujtce jeho vlastnosti [8].
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1.6.2 Fast Voxel Traversal Algorithm

Fast Voxel Traversal Algorithm je technika pouzivana na efektivne prechédzanie vo-
xelového priestoru. Tento algoritmus je v principe podobny DDA (Digital Differential
Analyzer) algoritmu, ktory sa pouZiva na rasterizéaciu tuse¢iek v 2D, ale je rozsireny
do 3D priestoru. Oba algoritmy vyuzivaju prirastkové vypocty na urcenie, ktory vo-
xel alebo pixel je potrebné spracovat dalej. Vdaka tomuto pristupu je mozné rychlo a
efektivne prechédzat voxelovym priestorom a urcit, ktoré voxely lezia na drahe luca.
Pouzitim tejto techniky sa znizuje pocet potrebnych operacii pri prechode z jedného

voxelu do druhého, ¢o zvySuje rychlost a efektivitu renderovania objemovych dat [3].

1.6.3 Raycasting

Raycasting je technika vykreslovania, ktord umoznuje priame premietanie trojrozmer-
nych dat na dvojrozmerné zobrazenie. Pri tomto procese sa z pozicie pozorovatela
vysielaju luce smerom k zobrazovacej ploche, kde kazdy 1u¢ zodpoveda jednému pi-
xelu na kone¢nom obraze. Lice sa pohybuji po malych krokoch a postupne ziskavaju
data a vlastnosti, ktoré spracuvaju [17]. Po prejdeni urcitej vzdialenosti sia vysledné

informaécie reprezentované ako pixely, ¢im vznika realisticky obraz 3D priestoru.

1.6.4 Ray-Box Intersection

Ray-box intersection je metdda, pomocou ktorej urcujeme, ¢i sa ¢ pretina s danym
objektom v priestore, tymto objektom myslime ohrani¢eny objem typu AABB. AABB
je jednoduchy geometricky ttvar v tvare kvadra, ktorého strany st rovnobezné s osami
suradnicového systému. Tato metdoda pocita priesecniky luca so vSetkymi Siestimi ro-
vinami, ktoré tvoria steny ohrani¢ujiceho objemu [18]. Je nevyhnutnym prvkom pri
pouziti metod ako je raycasting alebo raytracing, kde je vypoctova zloZitost velka a

efektivne detekcie prieseénikov st klicové na urcovanie kolizii.

1.7 Zobrazovaci kanal

Zobrazovaci kanal, po anglicky znamy ako rendering pipeline, je zakladny proces v
pocitacovej grafike, ktory zabezpecuje transforméciu 3D scén na 2D obrazy. Tento
proces zahifia niekol'ko etap, ktoré postupne spractivaju geometrické data, materialové
vlastnosti a d'alsie informécie. Konkrétne etapy a ich poradie sa mozu lisit v zavislosti

od pouzitého softvéru a zvoleného spésobu zobrazovania.
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1.7.1 OpenGL

OpenGL je standardizované rozhranie API (Application Programming Interface) pre
2D a 3D grafiku, ktoré umoznuje vyvojarom na roznych platformach vytvarat gra-
ficky naro¢né aplikacie. Vyuziva sa v mnohych odvetviach, ako st vyvoj hier, virtualna
realita, CAD systémy a vizualizacia vedeckych dat.

Hlavnou vyhodou je schopnost priamej spoluprace s grafickymi kartami a vyuzivanie
ich akcelera¢nych funkcii, ¢o umoziuje dosiahnut vyssi vykon [9]. OpenGL zobrazovaci

kanal a jeho jednotlivé etapy mozno vidiet na obrazku 1.4.

Shader programy

V OpenGL st shader programy neoddelitelnou sucastou zobrazovacieho procesu. Su
to programy napisané v jazyku GLSL (OpenGL Shading Language), ktoré umoziuju
priamu manipulaciu s grafikou na hardvérovej trovni [9]. Existuju rozne typy shader

programov, pricom kazdy je zamerany na Specificku fazu vykreslovacieho procesu:

e Vertex shader sa zaobera spracovanim jednotlivych vrcholov a vykonéva trans-
formacie vrcholov do priestoru po projekcii, moze byt pouzity aj pre iné operacie

s vrcholmi, ktoré pokracuja do dalsich etap.

e Tessellation shader umoziuje vytvarat vyssi stupen detailov na geometrickych
tvaroch bez potreby zvySovania poc¢tu vrcholov v povodnom modeli, a to pomocou

rozdelovania vrcholovych dat na mensie primitiva.

e Geometry shader umoznuje spracovanie celej primitivy, ako st trojuholniky

alebo ¢iary, moze zmenit pocet a tvar primitiv alebo generovat novi geometriu.

e Fragment shader je klucovy pri vizualizacii findlneho obrazu, pretoZe na pixe-
lovej tirovni manipuluje s jednotlivymi fragmentami a ich vlastnostami, ako st
farba a hibka. Kazdy fragment je spracovany osobitne a nezavisle od ostatnych,

¢o umoznuje vysoku troven paralelizacie.

e Compute shader je Specialny typ shader programu v OpenGL, ktory sa po-
uziva vyhradne na vypocty nezavislé od tradi¢ného renderovania grafiky. Tento
shader program je idealnym néastrojom pre komplexné vedecké vypocty, vdaka

jeho efektivnemu spracovaniu dat a rychlym vypoctom.

Uniformné premenné si dolezitym prvkom shader programov, ktoré umoznuji pre-
nos konstantnych hodnét z CPU do GPU. Tieto premenné st definované v shader

kode a ich hodnoty zostévaji nemenné pocas vykonavania shader programu pre vsetky
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Obr. 1.4: OpenGL zobrazovaci kanal [10].

spracovavané vrcholy alebo fragmenty. Uniformné premenné sa ¢asto pouzivaju na pre-
nos maticovych transformécii, svetelnych parametrov alebo inych globalnych stavovych

informacii, ktoré st potrebné na vykreslenie scény.

Proces presunu uniformnych premennych z CPU do GPU zahfna niekol'ko krokov,
ako je ziskavanie lokacii uniformnych premennych a nastavenie premennych. Tento
proces umoznuje efektivne riadenie zobrazovacieho kanala a dynamické aktualizovanie

parametrov renderovania bez potreby prerusovania prace GPU [9].

1.7.2 Vulkan

Vulkan je nizkotroviové API pre grafiku, ktoré poskytuje véicsiu kontrolu nad hardvé-
rovymi zdrojmi v porovnani s OpenGL. Této kontrola umoziuje vyvojarom optimali-
zovat vykon a efektivnejsie spravovat pamét, ¢o je kritické pre vysoko naro¢né grafické
aplikicie. Vulkan podporuje Siroku skalu platforiem, ako st Windows, Linux a Android,

¢o z neho robi ideélne riesenie pre multiplatformovy vyvoj [11].

1.7.3 DirectX

DirectX je sibor API od Microsoftu, ktory sa vyuziva na vyvoj multimedialnych ap-
likacii, najmé hier, na platformach Windows. Obsahuje rézne komponenty, z ktorych
najznamejsim je Direct3D pre 3D grafiku. Direct3D je Specificky navrhnuty pre opti-
malizaciu na systémoch Windows a poskytuje vyvojarom kontrolu nad hardvérovymi
zdrojmi. Tato nizkoturoviova kontrola umoznuje zlepsSenie vykonu, ale zaroven zvysuje

jeho néarocnost [13].
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Obr. 1.5: Aplikacia Mandelbulb3D.

1.8 Existujice riesSenia

Vizualizacia fraktélov spaja matematiku s umeleckym vyjadrenim a pocitacovou grafi-
kou. V oblasti 2D, 3D a 4D fraktalov existuju rozne systémy, ktoré vizualizuju fraktaly
roznymi technikami a optimalizaciami vzhladom na komplexnost vypoctov. Tieto sys-
témy prezentuju estetiku fraktalov a zaroven poskytuji néastroje pre vedecké analyzy,

ktoré umoznuji objavovanie novych vzorov a Struktur.

1.8.1 Mandelbulb3D

Jeden z najpopilarnejsich systémov je Mandelbulb3D, umoziiuje pouzivatelom pries-
kum a renderovanie fraktalnych strukttr v trojrozmernom priestore. Na vykreslovanie
pouziva techniku raymarching, ktora vysiela lice po ktorych sa postupne pohybuje
odhadom vzdialenosti od fraktélu [4]. Zaroven pontka pokro¢ilé moznosti osvetlenia a
textirovania, ktoré pridavaju realisticka hibku a detail. Ukazku tejto aplikacie mozeme

vidiet na obrazku 1.5.

1.8.2 Mandelbulber2

Tento systém poskytuje zname variacie fraktalov, ako napriklad Mandelbox, Bulbbox
a Juliabulb. Umoznuje prehliadanie 3D fraktélov v redlnom c¢ase a podobne ako Man-

delbulb3D vyuziva techniku raymarching [12].
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Kapitola 2
Navrh prace

V tejto kapitole sa podrobne zaoberdme navrhom, vyberom technologii, ktoré su do-
stupné a vhodné pre nas systém, architektiirou aplikacie na vizualiziciu viacrozmernych
fraktalov, konkrétne fraktalov definovanych nad kvaternionmi v §tvorrozmernom pries-
tore. Hlavnym cielom je poskytnit detailny prehlad jednotlivych casti systému a ich
procesov pre spravne fungovanie aplikacie. Tato kapitola slazi nielen ako implemen-

.....

zaoberajucich sa podobnymi systémami.

2.1 Vyber technologie

Na graficku vizualizéciu viacrozmernych fraktalov potrebujeme technologiu, ktora do-
kaze vyuzivat GPU a umozni ich zobrazenie v redlnom ¢ase. Pri vybere je kritické, aby
sme mali urc¢itd kontrolu nad hardvérom a mohli experimentovat s réznymi zobrazova-

cimi technikami.

Existuju systémy ako Unity alebo Unreal Engine 5, ktoré poskytuju mnozstvo na-
strojov, ale Casto obmedzuju flexibilitu vyvoja. Medzi technolégie vyhovujice nasim

poziadavkam patria OpenGL, Vulkan a Direct3D.

Po doékladnom zvazeni sme sa rozhodli vyvinut nasu aplikaciu s pouzitim OpenGL
kvoli vybornej dokumentacii a Sirokej podpore na réznych platformach. Z dostupnych
verzii OpenGL sme si vybrali najnovsiu, verziu 4.6, ktorda nam umoziuje pouZivat
compute shader. Pouzitie compute shader programu je kli¢ovym bodom pre efektivne
spracovanie fraktalov a zohrava podstatni rolu v nasej aplikacii.

Pri zvazovani technolégie Vulkan sme sa kvoli jeho vysSej vstupnej narocnosti a
zlozitosti rozhodli uprednostnit jednoduchsi a flexibilnejsi pristup OpenGL. DirectX je
tiez vybornym néstrojom, ale nepontka multiplatformovy vyvoj, nakol'ko je kompati-

bilny len s platformami Windows.

13
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2.1.1 KniZnice

OpenGL casto vyzaduje pridanie dodato¢nych kniznic pre efektivnejsi vyvoj a spravu
zakladnych operacii. Na poskytnutie dobrého zédkladu a zjednodusenie tychto tiloh sme

sa rozhodli pouzit nasledujice kniznice:

e GLAD (OpenGL Loading Library) je néstroj, ktory poskytuje dynamicky me-
chanizmus na generovanie kodu potrebného na pristup k funkcionalitAm OpenGL,
kedze OpenGL je platformovo rozmanité API, ktoré samo osebe nespravuje naci-
tanie svojich funkcii z hardvéru [9]. Tento pristup nam umoziuje implementovat
funkcie OpenGL bez nutnosti zaoberania sa kompatibilitou na réznych operac-

nych systémoch a grafickych kartéch.

e GLFW poskytuje jednoduché rozhranie pre vytvaranie okien, ziskavanie vstupov

z klavesnice, mysi, alebo inych vstupnych zariadeni a spravu kontextov OpenGL

[1].

e Dear ImGui je kniZnica na tvorbu grafickych pouzivatelskych rozhrani, ktora
nam umoziuje integrovat interaktivne a dynamické pouzivatelské rozhranie do
nasej aplikacie. Tato kniZznica je Casto vyuzivand v hernom vyvoji, pretoze po-

skytuje mnozstvo preddefinovanych komponentov.

2.2 Architektara aplikacie

2.2.1 Vytvorenie a konfiguracia projektu

Pri navrhu a vyvoji nasej aplikacie sme sa rozhodli pouzit Visual Studio, pretoze toto
integrované vyvojové prostredie (IDE) poskytuje velkt podporu pre programovanie v
jazyku C+-+. Hlavnym cielom pri konfiguracii nasho projektu bolo zabezpecit vysoku
prenositelnost a minimalizovat potrebu externych instalécii. Aby sme dosiahli tieto
poziadavky, vSetky potrebné kniznice st priamo integrované do projektu, ¢o umoziuje

jeho l'ahky prenos a spustenie na inom systéme, ktory obsahuje Visual Studio.

2.2.2 'Triedny diagram

Na obrazkoch 2.1 a 2.2 je zobrazeny triedny diagram, ktory poskytuje vizudlny prehlad
o Strukture aplikacie a sluzi na lepSie pochopenie vztahov a funkcii jednotlivych ¢asti,
ktoré systém obsahuje.

Popis jednotlivych tried a ich funkcii:
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e Application je jadro aplikacie, ktoré inicializuje OpenGL a spravuje hlavny cyk-
lus vykonavania programu. Tento cyklus zabezpecuje neustéle bezanie programu

a koordinuje vSetky hlavné procesy.

e Camera je zodpovedna za navigaciu a orientaciu v 3D priestore. Vektory, ktoré
pouZiva na urcenie pozicie a uhly na rotaciu dynamicky reaguju na pouzivatelské

vstupy.

e Window zabezpecuje inicializaciu a spravu hlavného okna aplikicie, do ktorého
sa vykresluje graficky obsah. Spravuje vlastnosti okna ako st rozmery a zmeny

rozmerov pouZivatelom.

e Uniforms je trieda obalujtica vSetky premenné a data, s ktorymi aplikacia pocas
svojho behu pracuje. Umoznuje Tahka pracu s premennymi a ich manipulaciu.
Zéaroven sluzi na prepojenie a aktualizaciu uniformnych premennych pouzivanych
v shader programoch a pracuje s tloziskom potrebnym pre vysledky vypocitané

cez compute shader.

e GUI implementuje funkcionality kniznice Dear ImGui pre vytvorenie interaktiv-
neho pouzivatel'ského rozhrania. Téato trieda umozinuje pouzivatel om interaktivnu

manipuléciu s grafickou vizualizaciou.

e VFShader je trieda zodpovedna za spravu vertex a fragment shader programu.

Zabezpecuje kompiléciu a vytvorenie shader programu z na¢itanych siborov.

e Compute je trieda, ktora spravuje compute shader program podobne ako trieda

VFShader. Zabezpecuje kompilaciu a zodpovedé za jeho spustenie na GPU.

e VBO (Vertex Buffer Object) je zodpovedné za uchovéavanie vrcholovych dat v

grafickej pamiti a umoziuje rychlejsie vykreslovanie [9].

e VAO (Vertex Array Object) sluzi ako kontajner pre mnoho VBO a definuje for-
mat vrcholovych dat ulozenych vo VBO [9].

e EBO (Element Buffer Object) sa pouziva spolu s VBO na efektivne ukladanie
indexov, ktoré definuji, ako st vrcholy spojené do primitiv (trojuholniky alebo

ciary) [9].

Casti VBO, VAO a EBO st nevyhnutné aj v pripadoch, kedy aplikacia nepouziva
explicitné vrcholy alebo komplexné geometrie ako je to v nasej aplikicii. OpenGL
vyzaduje definované vrcholy a indexy pre renderovanie obrazu, je doélezité mat tieto

zékladné komponenty pre spravny vystup.
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- data : Uniforms&

- beginFrame() : void

- endFrame() : void

- FPSms(FPS : double) : void
- fractal() : void

- color() : void

- scene() : void

- slice() :void

- render() : void

+ settings(FPS : double) : void
+ draw() : void

Uniforms

- window : Window&

- camera : Camera&

- UniformLocations : struct
- sb : GLuint

+ iterations : int

+ power : int

+ bailout : float

Window

- window : GLFWwindow*
- width : int
- height : int Application
- title : string

- 1 - window : Window
+ exists() : bool - camera : Camera
+ create() : void
+ destroy() : void + initialize() : void
+ updateDimensions() : void + run() : void
+ get() : GLFWwindow* +end() : void
+ getWidth() : int
+ getHeight() : int

1
1
Camera

+ position : gim::vec3
+ front : glm::vec3
+ right : gim::vec3

+ initialize(ID : GLuint) : void

+ update() : void

+ resetFractal() : void

+ resetColor() : void

+ resetScene() : void

+ resetSlice() : void

+ resetCamera() : void

+ setupScreenTexture() : void

+ getScreenData() : std::vector<GLfloat>
+ setup3Dtexture() : void

+ bind3DTexture() : void

+ setupTextureParameters() : void
- setupSliceBuffer() : void

- updateSliceBuffer() : void

+ up : gim::vec3
+ fov : float

+ yaw : float

+ pitch : float

+ lastX : float

+ lastY : float

+ speed : float

+ sensitivity : float
+ zoom : float

+ click : bool

+ processlnputs(window : Window&, deltaT : float) : void

+ processKeys(window : Window&, deltaT : float) : void

+ processMouse(window : Window&) : void

+ processScroll(screen : GLFWwindow*, value : float) : void
+ updateVectors() : void

+ reset() : void
+ scrollCallback(window : GLFWwindow*, deltaX : double, deltaY : double ) : void

Obr. 2.1: Triedny diagram cast 1.
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VFShader

+ID : GLuint

+ activate() : void
+ destroy() : void

1.*
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VAO

- ID : GLuint

+ bind() : void
+ unbind() : void
+ destroy() : void

+ linkVBO(vbo : VBO&, layout : GLuint) : void

VBO

- ID : GLuint

+ bind() : void
+ unbind() : void
+ destroy() : void

1

Application

Compute

- window : Window
- camera : Camera

+ ID : GLuint
1.*

+ activate() : void

+ initialize() : void
+ run() : void
+ end() : void

+ destroy() : void
+ dispatch(width : int, height : int) : void
+ dispatch(gridSize : int) : void

EBO

- ID : GLuint

+ bind() : void
+ unbind() : void
+ destroy() : void

Obr. 2.2: Triedny diagram cast 2.

2.2.3 Pouzivatel'ské rozhranie

Jednym z cielov naSej aplikacie je poskytnut pouZivatelom interaktivne pouzivatelské

rozhranie, ktoré im umozni pohybovat sa v priestore a prehliadat zobrazovant Struk-

taru.

Navrh pouzivatel'ského rozhrania

Po otvoreni aplikicie sa pouzivatelovi zobrazi interaktivne okno. Toto okno obsahuje

jednotlivé sekcie, ktoré spravuji nastavenia fraktalu, farby, rezov stvrtej dimenzie,

scény a renderovania obrazkov.

Popis jednotlivych sekcif:

e Nastavenia fraktalu: Téato sekcia umoziuje pouzivatelovi vybrat z preddefino-

vanych fraktalov, ako st Mandelbrotova a Juliina mnozina. Obsahuje nastavenia,

ako st pocet iteracii, mocnina fraktalu a d'alSie mozné nastavenia, ktoré su Spe-

cifické pre vybrany fraktal.

e Nastavenia farby: Umoznuje zobrazit farbu §tvrtej dimenzie a nastavit osvet-

lenie fraktalov. Osvetlenie je dostupné len pri povrchovom zobrazeni fraktéalu.
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e Nastavenia rezov: Umoznuje nastavit rezy stvrtej dimenzie. Pouzivatelia si
mozu zvolit interval rezov alebo nastavit jednotlivé rezy manuélne, pricom je

mozné rezy pridavat alebo odoberat.

e Nastavenia scény: Poskytuje vyber renderovacej techniky a s nou spojené Spe-
cifické nastavania. f)alej pontka vyber medzi povrchovym alebo volumetrickym

zobrazovanim.

¢ Nastavenia renderovania: Umoznuje renderovat obrazky vo zvolenom rozli-
Seni a poskytuje moznosti na tpravu detailov, ktoré sa aplikujua len na vysledny

obrazok.

Vsetky nastavenia budu vyuzivat komponenty, ktoré obsahuje kniznica Dear Im-
Gui, a kazda sekcia bude obsahovat tlac¢idla pre resetovanie nastaveni, ¢o umoznuje

pouzivatelom rychlo vratit konfiguraciu do vychodiskového stavu.

2.2.4 Datovy tok

Pre spravne fungovanie aplikacie je nevyhnutné zabezpecit plynuly tok dat medzi roz-
nymi komponentami systému. Spravna manipuléacia a koordinacia dat sa klacové pre
predchédzanie potencidlnym problémom.

Tok déat v nasej aplikicii prechadza nasledujicimi krokmi:

1. Inicializacia dat: Pri spusteni aplikacie sa pred hlavnym cyklom programu ini-

cializuju vsetky premenné konstatami.

2. Vstup od pouzivatel'a: Pouzivatel ma k dispozicii grafické rozhranie na pracu

s aplikidciou. Vstupy st prijimané cez toto rozhranie a pomocou klavesnice a mysi.

3. Aktualizacia dat: Pred kazdym prikazom na vykreslenie sa aktualizuji vsetky
data bez ohladu na ich zmenu, tieto data sa potom posielaji do aktivovaného

shader programu cez uniformné premenné.

4. Spracovanie shader programom: Po poslani uniformnych premennych moze
shader program pracovat s aktualizovanymi datami. Shader program spractvava

tieto data a vytvara graficky vystup.

5. Vystup: Vysledné grafické data st zobrazené na obrazovke.

2.2.5 Shader programy a ich riadenie

Aplikéicia bude obsahovat tri hlavné shader programy, ktoré je v ramci architektiry na-

Sej aplikacie dolezité spravne riadit a koordinovat. Na zaciatku aplikacie sa inicializuja
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vSetky tri shader programy. Tieto programy budu pripravené na spustenie v zavislosti
od ich potreby.

Jeden shader program je fragment shader, ktory je aktivny vicsinu ¢asu pocas behu
aplikicie a stara sa o vizualizaciu scény v okne aplikacie. Dalsie dva buda compute sha-
der programy, jeden na vypocitavanie obréazkov a druhy na prepocitavanie voxelovych
dat. Compute shader programy su spustané na poziadanie, ked je potrebné vykonat

narocnejsie vypocty.

Prepinanie shader programov

OpenGL dovoluje bezanie len jedného shader programu sucasne. Pri potrebe zmeny
z fragment na compute shader systém najprv deaktivuje beziaci fragment shader a
spusti compute shader. Idedlnym spésobom by bolo vykonévat ¢iastkové vypocty cez
compute shader, pretoze vypocet moze trvat dlhsiu dobu, a poskytovat tieto data
fragment shader programu. Avsak tento pristup by mohol viest k nekonzistencii dat v
dosledku ¢astych zmien parametrov od pouzivatela. RieSenim tohto problému je proces,
ktory umoznuje aplikacii zastavit sa a pockat na dokoncenie vypoc¢tov compute shader
programu predtym, ako aktivuje fragment shader program. Tento navrh zabezpecuje,
ze vsetky spracované déata st konzistentné a kompletné. Kazdy shader program moze

efektivne vykonavat svoju funkciu bez negativneho ovplyvnenia a narusenia ostatnych.
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Kapitola 3
Implementacia

V tejto kapitole si podrobne rozoberieme implementacné detaily nasej aplikacie a im-
plementujeme rozne techniky na vizualizaciu stvorrozmernych fraktalov. PopiSseme kon-
krétne kroky a techniky pouzité v procese vyvoja, ktoré nas dovedu od zaciato¢nych
faz az po findlnu verziu aplikidcie. Okrem technickych aspektov sa zameriame aj na

optimalizacie, ktoré zvysuja efektivitu a vykon nasej aplikacie.

3.1 Vyuzitie zobrazovacieho kanalu

Pri implementacii nasej aplikacie sme sa zamerali na efektivne vyuzitie zobrazovacieho
kanalu. Zobrazovaci kanal OpenGL pontka viacero tirovni spracovania, ktorych tprava
a implementacia nebola potrebnéa. Vsetka logika pre zobrazenie je integrovana v jedinom
fragment shader programe, ktory priamo manipuluje s obrazovymi datami na trovni

fragmentov.

3.2 Transformacia suradnic

Fragment shader dostava na vstupe siradnice pixelov, ktoré st definované rozmerom
okna, v ktorom je aplikicia spustena. Tieto stiradnice urcujua, pre ktory pixel sa vypo-
Citavaju grafické vlastnosti.

Proces transformacie sturadnic je kIi¢ovym krokom, ktory zjednodusuje nasledujuce
tazy zobrazovania a je Standardne implementovany v mnohych grafickych systémoch.
Implementujeme konverziu stiradnic z ich povodnej formy do normalizovanej formy. Pri
tejto transformaécii sa stiradnice premapuji tak, aby pokryvali interval od —1 po 1 pre
obe osi, x aj y. Aby sme predisli vizuédlnej deformaécii v dosledku nestvorcovych rozme-
rov okna, prispdsobime os x pre zachovanie pomeru stran obrazovky. Po transformaécii

suradnic sa bod [0, 0] nachadza presne v strede obrazovky.

21
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3.3 Smer Iaca

Pomocou normalizovanych stradnic pixelov a orienta¢nych vektorov kamery vypocita-
vame smer luca pre kazdy pixel. Tento proces nam umoznuje efektivne prechadzat scénu
tretim rozmerom a vizualizovat priestor. Smer luca zacina na pozicii kamery a simuluje

perspektivu Tudského oka, ¢o je kIticové pre dosiahnutie realistického zobrazenia.

3.4 Vypocet fraktalu

Pre zobrazenie stvrorozmerného fraktalu do 3D priestoru pouzivame vypocet fraktélu
pomocou kvaternionovych funkcii. Vypocet vykondvame rovnako ako v komplexnej
rovine, pouzivame iterativnu funkciu, ktort iterujeme zvolenym poctom iteracii.
Ukézka vypoctu je znazornené v algoritme 3.1, ktory popisuje vypocet Mandelb-
rotovej mnoziny definovanej nad kvaternionmi. Algoritmus vracia prislusnost vstup-
ného kvaternionu ¢ k Mandelbrotovej mnozine, kde prvé tri siradnice x, y, z predsta-
vuju poziciu v 3D priestore a stvrta siradnica w predstavuje stvrta dimenziu. Funkcia
gPower(q,n) umochuje kvaternion ¢ na mocninu n, gNorm(q) vracia velkost kvater-
nionu ¢, iterations je pocet iteracii a bailout je hodnota, ktord urcuje hranicu pre

zastavenie iteracie, ak velkost kvaternionu presiahne tito hodnotu.

Algoritmus 3.1: Algoritmus na vypocet prislusnosti bodu k fraktélu.
bool fractal(vecd c¢) {
q = vecd (0.0);
for (int i = 0; i < iterations; i++) {

q = qPower(q, n) + c;
if (qNorm(q) > bailout) {

return false;

}

return true;

3.5 Prechadzanie scény

Pre kazdy pixel na obrazovke sme si pripravili smer la¢a a mame poziciu kamery, vdaka
tymto parametrom sa moéZzeme malymi krokmi pohybovat po laci a zbierat informécie
z 3D priestoru, ktoré vykazuje dany fraktal.

Hoci je tato technika Siroko pouzivana pre jej jednoduchost, ma svoje nevyhody.

Jeden z problémov ktory nastava, je Ze pozicia kamery moze byt vzdialena od zau-
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jimavych casti fraktalu a pocet krokov musi byt vyrazne vyssi, ¢o sposobuje vysoki

vypoctovi naroc¢nost.

3.5.1 Optimalizacia

Aby sme minimalizovali tito naro¢nost a zefektivnili vizualizaciu, definovali sme ne-
mennt obalku priestoru [—1,1]3, v ktorej sa zobrazuju vSetky vypocty. Vsetko mimo
tejto obalky ignorujeme. Vdaka pouzitiu algoritmu Ray-Boxz Intersection modZeme efek-
tivne urcit, ktoré luce prechadzaju obalkou a ktoré nie. Ak 14¢ neprechadza touto obal-
kou, pixelu priradime farbu pozadia. Ak la¢ prechédza obalkou, vstupujeme do obalky
v mieste prvého prieseénika a pokracujeme v smere luca az po jej koniec. Na obrazku

3.1 mozno vidiet dant obalku, v ktorej zobrazujeme vypocty.

Obr. 3.1: Obalka v ktorej prebieha vypocet fraktalu.

Obalka je nemennd, tato vlastnost zabezpecuje konzistentné zobrazenie fraktalu

vzdy na rovnakom mieste.

Obélka nedefinuje hodnoty fraktalu, ktoré poc¢itame, pri najdeni priese¢niku trans-
formujeme body na pozadovany tsek ktory chceme vypocitat. Tento postup umoziuje
pozorovanie roznych c¢asti fraktalu na réznych mierkach bez potreby prisposobovat roz-

sah pozorovania alebo upravovat pohyb kamery.



24 KAPITOLA 3. IMPLEMENTACIA

Obr. 3.2: Fraktal bez farby a osvetlenia.

3.6 Farba a Osvetlenie Fraktalu

Farbu pouzivame na reprezentaciu dodatoc¢nej stvrtej dimenzie, ktorej detaily by boli
inak nemozné rozlisit. Pri neaplikovani farby nevieme o stvrtej dimenzii ni¢ iba hodnotu

pre ktort sa vypocitava.

Pre transforméciu $tvrtej dimenzie fraktalu na farbu, vyuzivame metédu zalozenu
na mapovani intervalu [—1, 1] na vlnové dlzky v rozmedzi od 380 do 780 nanometrov,
tento rozsah pokryva celé viditelné spektrum, od fialovej po ¢erveni. Transformécia na
konkrétne farby je realizovana algoritmom od tvorcov Dragos Mihai a Eugen Strajescu,

ktory je podrobne opisali v praci [14].

Pouzitie osvetlenia pridava hlbku do obrazu a zvysuje realistickost zobrazenia. Na3
vypocet negeneruje geometriu povrchu, preto nie st dostupné normalové vektory pre
vypocet interakcie fraktalu a svetla. Osvetlenie, ktoré zlepsuje chépanie tretej dimenzie
sme preto implementovali pomocou kvadratického modelu atlmu svetla. Tento model
zohladnuje vzdialenost svetelného zdroja od bodov fraktalu, kde intenzita svetla klesa

s rastiicou vzdialenostou od zdroja.

Ukéazku rozdielu medzi nepouzitim a pouzitim tychto technik na zlepsenie realistic-

kosti je mozné videit na obrazkoch 3.2 a 3.3.
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Obr. 3.3: Fraktal s farbou a osvetlenim.

3.7 Povrchové a volumetrické zobrazenie

Fraktaly mézeme zobrazit viacerymi spésobmi, pricom kazdéa ponuka unikatne pohlady

a informaécie o strukture fraktalu.

Povrchové zobrazenie

Pri povrchovom zobrazeni sa ststredime na zobrazenie vonkajsej hranice fraktalu. Lac
vychédzajuci z kamery prechadza scénou a je postupne testovany na pritomnost frak-
talu. Vypocet sa zastavi, ked 1u¢ narazi na prvy bod, ktory je sucastou fraktalu. Tento
pristup zjednodusuje vypocet tym, Ze sa zameriava len na najblizsie hrani¢né body
fraktalu pozdlz luca. Kazdy pixel obrazovky teda reprezentuje najblizsi povrchovy bod
fraktalu voci pozicii pozorovatela. Ukazku povrchového zobrazenie mozeme vidiet na
obrézku 3.3, na obrazku je znézornena aj farba Stvrtej dimenzie, ktora je fixna a zo-

brazuje jeden rez stvrtej dimenzie.

Volumetrické zobrazenie

Pri volumetrickom zobrazovani prechadzame celym objemom, teda obalkou ktortd sme
definovali pre zobrazenie vypoctov. Lu¢ vychadzajuci z kamery prechédza fraktédlom a
spocitava farby vSetkych bodov, ktorymi prejde. Spocitana farba sa vydeli poc¢tom kro-
kov, ktorymi prechadzame cez obalku, delenim dosiahneme priemernt hodnotu farby .

Ukazku volumetrického zobrazenia mdzeme vidiet na obrazku 3.4.
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Obr. 3.4: Volumetrické zobrazenie fraktélu.

3.8 Implementacia voxelov

Doterajsi postup zobrazovania fraktalov v nasej aplikacii ma vyznamné nevyhody, ako
je potreba opakovaného vypoctu fraktalu pre kazda snimku. Tento proces je neprak-
ticky a neefektivny, najmé ked technika postupného pohybu po laéi moze preskocit
oblasti, kde by sa mohol fraktal nachadzat. Tento pristup tiez vedie k nekonzistencii

zobrazenia, kedZe z roznych uhlov mozeme zachytit odlisné detaily.

Na rieSenie tychto problémov sme zvolili predspracovanie dat fraktalu v compute
shader programe. Tento program vypocita fraktal pre kazdy voxel pre dant velkost vo-
xelovej mriezky, na ukladanie dat pouziva 3D texture buffer, ktoré po skonceni vypoctov
nasledne vyuzije fragment shader pre vizualizaciu. Compute shader pocita pritomnost
fraktdlu v danom bode, ak je fraktal pritomny, potom ulozime farbu stvrtej dimenzie,

ktora zaberd 24bitov paméate pre kazdy voxel.

Na zefektivnenie procesu vizualizicie voxelovych dat sme implementovali techniku,
znamu ako Fast Voxel Traversal Algorithm, ktora sa nepostva po 1uci ale po jednotli-
vych voxeloch vo voxelovom priestore. Ukazku reprezentéacie fraktalu pomocou voxelov

mozZeme vidiet na obrazku 3.5.

Tento postup nadm umoziuje vyhnut sa opakovanému vypoctu a zaroven eliminuje

nekonzistenciu v zobrazeni fraktalu z réznych perspektiv.
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Obr. 3.5: Zobrazenie fraktalu voxelmi.

3.9 Renderovanie obrazkov

Renderovanie obrazkov vo vysokom rozliSeni je povazované za kltucovia vlastnost kaz-
dého vizualiza¢ného systému. Nasa implementacia vyuziva compute shader, ktory fun-
guje podobne ako fragment shader. Hlavny rozdiel spo¢iva v tom, ze compute shader
vypocita vystupné data len raz a uchovava ich v paméti.

Na rozdiel od fragment shader programu, compute shader prijima na vstupe sturad-
nice pixelov, ktoré vsak koresponduju s rozlisenim findlneho obrézku, nie okna aplikacie.
Tento postup umoziuje vypocet obrazkov s pouzitim techniky postupného posiivania
po ladi, kde sa obraz vykresluje po malych krokoch. Dalej sme implementovali d'alsie
nastavenia, ako je urcenie poc¢tu krokov, ¢o umoznuje renderovanie obrazka s vysokym
detailom.

Po dokonceni vsetkych vypoctov sa na zéklade vytvori obrazok formétu .png. Ukla-
danie obrazkov prebieha automaticky a v hlavnom projekte sa vytvara priecinok output,

z ktorého si moézu pouzivatelia Iahko obrazky prezerat.

3.10 Pouzivatel'ské rozhranie

Pouzivatel'ské rozhranie bolo navrhnuté tak, aby umoznilo pouzivatel om pohodlne pre-
zeranie a experimentovanie s roznymi typmi fraktalov. Hlavné rozhranie je rozdelené do
viacerych sekcii, ktoré umoznuju detailné nakonfigurovanie fraktalu a vyuzivanie roz-
nych zobrazovacich technik. Ukazku rozhrania moézeme vidiet na prilozenom obrazku
3.6.

Implementacia tohto rozhrania bola vykonané s vyuzitim kniznice Dear ImGui,
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ktorej existujice komponenty boli postacujice na jeho vytvorenie. Rozhranie obsahuje

intuitivne ovladacie prvky, ktoré st zoskupené tematicky podla ich funkcie a ucelu.

Nastavenie fraktalu

Sekcia nastavenie fraktalu umoziuje pouZivatelovi vybrat si z réznych preddefinova-
nych fraktalov prostrednictvom rozbalovacieho menu, implementovali sme nastavenia
pre najznamesie mnoziny ako je Mandelbrotova mnozina a Juliina mnozina. Po vybere
konkrétneho fraktélu sa zobrazia jeho $pecifické nastavenia.

Medzi tieto nastavenia patri pocet iterdcii, mocnina, ktorou je fraktal umocneny
a bod, ktory ovplyviuje vizualizovany fraktal. Uzivatel mé& moznost upravovat tieto
hodnoty pomocou posuvnikov. Posuvniky obsahuji vZdy miniméalnu a maximélnu hod-

notu.

Nastavenie farby

Nastavenia farby umoznuju prisposobit vizualnu reprezentaciu Stvrtej dimenzie a zlep-
it vnimanie tretej dimenzie pomocou osvetlenia. Tieto volby sa aktivuji pomocou
zaSkrtavacich policok. Pri pouZiti osvetlenia sa spristupnia dalSie nastavenia pre ap-
ravu polohy svetelného zdroja v scéne.

Pri volumetrickom zobrazeni sa spristupni dalSie nastavenie na tpravu intenzity
farby kazdého zobrazovaného bodu. Tato funkcia bola pridané z dovodu nizkej viditel-

nosti fraktalov, ktoré tvoria len malu ¢ast zobrazovaného priestoru.

Nastavenia rezov

V nastaveniach rezov existuji dve moznosti. Prvou moznostou, ktora je predvolena
pri spusteni aplikacie, je pridavanie a odoberanie jednotlivych rezov pomocou tlacidiel
+ a —. Jednotlivé rezy je mozné odoberat a pridavat, nastavenie rezu je ovladané
posuvnikom. Druhou moznostou je vyber intervalu, z ktorého sa rezy vyberta a poctu

rezov, ktoré sa v tomto intervale zobrazia.

Nastavenia scény

Nastavenia scény pontikaju najrozsiahlejsie moznosti. Pouzivatel si moze vybrat tech-
niku zobrazenia fraktalu. Pri volbe moznosti calculations sa fraktal zobrazuje postup-
nym pohybom pozdlz lic¢a, pocet tychto krokov je mozné upravovat pomocou posuv-
nika. DalSou technikou je zobrazenie fraktalu ako voxelov wvozxels, vyber tejto tech-
niky spusta funkciu, ktora aktivuje compute shader na prepocitanie voxelov a nahradi
moznost vyberu po¢tu krokov vyberom velkosti voxelovej mriezky v priestore, pro-

strednictvom rozbalovacieho menu. V oboch technikidch st k dispozicii povrchové a
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volumetrické zobrazenia.

Pri vol'be vozxels sa zobrazi tla¢idlo recalculate, pretoze ¢asté prepocitavanie fraktalu
pri kazdej zmene nastaveni je nepraktické. Po nakonfigurovani pozadovaného fraktalu
je potrebné kliknit na toto tlacidlo, aby sa voxely fraktalu znovu prepocitali.

Pomocou nastaveni start a size je mozné posuvat fraktalom v priestore a zobrazovat

lubovolna ¢ast fraktalu, tieto moZnosti st implementované posuvnikmi.
)

Nastavenie renderovania

Nastavenia renderovania umoziuji pouzivatelovi vytvorit obrazok fraktalu s vysokym
rozliSenim a detailom. K dispozicii je rozbalovacie menu s preddefinovanymi rozlise-
niami, z ktorych si pouzivatel moze vybrat.

balej su k dispozicii dve moznosti: kopirovanie nastaveni rezov alebo kopirovanie
poc¢tu krokov. Tieto funkcie boli pridané z dévodu vysokej naro¢nosti pri zobrazovani
velkého poctu rezov a krokov v redlnom case. PouZivatel si tak moZze nakonfigurovat

vlastné nastavenia rezov a krokov, ktoré sa pouziju len na vyrenderovany obrazok.

3.10.1 Pohyb kamery

Pohyb kamery v priestore reaguje na vstupy klavesnice a mysi. Pohyby hore, dolava,
dole, doprava ovladaju klavesy W, A, S, D, pomocou kolieska my$i sa postvame dopredu
alebo dozadu. PribliZzenie sa ovlada stlac¢enim kldvesy C'TRL a kolieskom mysi, tento
vstup aktualizuje zorné pole kamery a po pusteni klavesy CTRL sa vratime na povodné
nastavenie zorného pola. Stlacenie a drzanie Tavého tlacidla mysi, spolu s pohybom

mysi, umoznuje rotaciu kamery okolo aktuélnej pozicie.



Kapitola 4

Vysledky

Tato kapitola je venovana prezentécii a diskusii o vysledkoch dosiahnutych pocas vy-
voja a implementacie nasho vizualizacného softvéru. Zvlastny doraz kladieme na hod-
notenie vypoctovej a pamétovej zlozitosti roznych zobrazovacich technik, ktoré sme
implementovali. Analyzujeme, ako jednotlivé pristupy ovplyviuja vykon aplikacie a
kvalitu zobrazenia fraktalov. Vysledky st podlozené kvantitativnymi tdajmi a vizual-

nymi prikladmi.

4.1 Porovnanie zobrazovacich technik

Pre lepsie porozumenie tdajov oznaéime metodu vypoctov pozdlz laca ako VPL a
metoédu zobrazovania voxelov ako MZV. Tieto dve metédy sa zasadne liSia vo svo-
jich pristupoch a v detaile, ktory poskytuji. Pre ich efektivne porovnanie sme navrhli

testovacie prostredie, ktoré priblizi ich zlozitost a schopnost zobrazovat detaily.

4.1.1 Testovacie prostredie

Vyuzivame prostredie s konstantnymi rozmermi zobrazovacieho okna 512x512 pixelov.
Kamera je umiestnena tak, aby fraktalna struktara bola zobrazena cez celt obrazovku.
Pre VPL stanovime konstantny pocet krokov na 512, zatial ¢o pre MZV nastavime
voxelovii mriezku o rozmeroch 512x512x512. Tymto zaistime, Ze kazdy pixel obra-
zovky bude reprezentovany jednym voxelom, ¢o umozni rovnaké podmienky pre obi-
dve metody. Tento pristup zarucuje, ze vysledky metod sa porovnatelné. Tabulka 4.1
zobrazuje vysledky testovania, ktoré bolo vykonané na grafickej karte RTX 3060, pri
pouziti volumetrického zobrazenia kvaternionovej formy Mandelbrotovej mnoziny s 32

iterdciami a umocnenim na druhu.

31
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Tabulka 4.1: Doba a pamét potrebna pre vypocet jedného snimku s danym poctom

rezov Stvrtej dimenzie.

~

Metoda Pocet rezov  Cas (ms) Pamét (MB)

VPL 1 17 0
3 55 0

10 180 0

MZV 1 7 384
3 7 384

10 7 384

4.1.2 Efektivnost a paméatova zlozitost

Pri porovnavani Metody VPL a metody MZV je dolezité poznamenat, ze kazdé z nich
ma svoje Specifické vyhody a nevyhody. Ako je zrejmé z udajov v tabulke 4.1, Metoda
VPL je ¢asovo naroc¢nejsia, pricom doba potrebné na vykreslenie jedného snimku sa vy-
razne zvysSuje s poc¢tom rezov stvrtej dimenzie. Napriek tomu, tato metéda nevyzaduje
uchovavanie dodato¢nych dat v paméati.

Metoda MZV si vyzaduje velky objem paméte na ukladanie predpocitanych vo-
xelovych dat. Pamétové poziadavky st konStantné bez ohladu na pocet rezov, kedze
pamét obsahuje len findlnu farbu voxelov. Tato metéda poskytuje vyhodu v rychlosti
zobrazenia, pretoZze pocas samotného renderovania nie su potrebné dalsie vypocty, ¢o
znacne skracuje Cas potrebny na vykreslenie obrazka.

Tato rozdielnost ukazuje, ze metéda MZV je vhodnejsia pre aplikacie, kde je pri-
oritou rychlost zobrazenia a je k dispozicii dostato¢né mnozstvo paméte. Metéda VPL
by mohla byt preferovanéa v prostrediach, kde nie je mozné uchovavat velké mnozstva

dat v paméti.

4.2 Vizualne ukazky

Pre vizualizaciu celého Stvorrozmerného fraktalu nestaci zobrazit len jeho jednotlivé
rezy, ale je potrebné ich spojit. Ako priklad si vezmime Juliinu mnozinu a postupne
navysujme pocet rezov vo Stvrtej dimenzii (obrazky 4.1, 4.2, 4.3). Na obrazku 4.4 je
pouzity volumetrické zobrazenie, ktoré na rozdiel od povrchového zobrazenia odhaluje

aj vnatorna Struktaru fraktalu.
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Obr. 4.1: Juliina mnozina 1 povrchovy rez.

Obr. 4.2: Juliina mnozina 3 povrchové rezy.
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Obr. 4.3: Juliina mnozina 50 povrchovych rezov.

Obr. 4.4: Juliina mnozina 50 volumetrickych rezov.



Zaver

Hlavnym cielom tejto bakalarskej prace bolo zobrazit Stvorrozmerné fraktaly v troj-
rozmernom priestore, pricom Stvrtu dimenziu fraktalu reprezentujeme pomocou farby.
Tento pristup nam umoznil vizudlne preskiimat a analyzovat komplexné Struktiry
tychto matematickych objektov.

Na zaciatku sme sa venovali teoretickym zakladom fraktalov a kvaternionov. Né-
sledne sme preskiimali rozne techniky vizualizécie a optimalizécie, pricom sme cerpali

Na zéklade tejto analyzy sme navrhli architekturu aplikacie, ktori sme implemen-
tovali s vyuzitim technologie OpenGL a shader programov.

V ramci implementéacie sme sa stustredili na dve hlavné zobrazovacie techniky, vypo-
et pozdlz luca a zobrazovanie voxelov pomocou algoritmu Fast Voxel Traversal Algo-
rithm. Obidve techniky sme optimalizovali pomocou algoritmu Ray-Box Intersection,
ktory vyrazne zrychlil vypocty priesecnikov lucov s obalkou scény. Pre zobrazovanie vo-
xelov sme museli najprv vykonat potrebné vypocty, preto sme implementovali compute
shader program.

Porovnanim jednotlivych metdd sme zistili, Ze zobrazovanie voxelov je efektivnejsia
technika, ale vyzaduje si vysoku paméatova kapacitu. Do aplikacie sme integrovali ka-
meru, ktora zabezpecuje pohyb v 3D priestore, a vytvorili sme pouZivatelské rozhranie,
ktoré pontka rozsiahle moznosti pre konfiguraciu scény.

Budici vyvoj by mohol zahfhat implementaciu dalsich technik zobrazovania alebo
struktir, ktoré by znizovali pamétové naroky, napriklad datova struktdra octree. Dal-
Sou budicou implementaciou by mohlo byt rozsirenie pouZivatelského rozhrania, ktoré
by umoznilo pouzivatelovi priamo zadavat iterativne funkcie fraktalov, ktoré by sa
zobrazovali.

Tato praca nielenze polozila pevné zéklady pre dalsi vyvoj v oblasti vizualizacie
viacrozmernych fraktalov, ale aj prispela k lepsiemu pochopeniu a skimaniu tychto

fascinujucich matematickych objektov.
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Priloha A: obsah elektronickej prilohy

V elektronickej prilohe prilozenej k praci sa nachadza zdrojovy kod programu a subory
s vysledkami experimentov.
Zdrojovy kod je zverejneny aj na stranke
https://github.com/adrkoc/BachelorThesis.
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