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Abstrakt

Táto práca sa zameriava na vizualizáciu štvorrozmerných fraktálov v trojrozmernom
priestore, pričom štvrtú dimenziu reprezentuje farba. Tieto fraktály sú definované nad
hyperkomplexnými číslami, kvaternionmi. V práci sme analyzovali teoretické základy
fraktálov, kvaterniónov a rôzne zobrazovacie techniky. Navrhli a implementovali sme
softvérový systém, ktorý využíva moderné technológie. Vyvinutý softvérový systém
poskytuje používateľom intuitívne rozhranie na manipuláciu s fraktálmi, výber zobra-
zovacej techniky, ovládanie kamery a renderovanie obrázkov vo vysokom rozlíšení.

Kľúčové slová: fraktál, kvaternion, štvrtá dimenzia, farba
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Abstract

This work focuses on the visualization of four-dimensional fractals in three-dimensional
space, with the fourth dimension represented by color. These fractals are defined over
hypercomplex numbers, quaternions. In this paper we have analyzed the theoretical
foundations of fractals, quaternions and various imaging techniques. We have desig-
ned and implemented a software system that uses modern technology. The developed
software system provides users with an intuitive interface for manipulating fractals,
selecting imaging techniques, controlling the camera, and rendering high-resolution
images.

Keywords: fractal, quaternion, fourth dimension, colour
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Úvod

Vo svete, kde technológia neustále prekračuje hranice možného, sa otvárajú nové obzory
pre prieskum doteraz len málo preskúmaných oblastí. Jednou z takýchto oblastí sú
fraktály, nekonečné a úchvatné štruktúry, ktoré stoja na rozmedzí medzi chaotickým a
usporiadaným správaním. Tieto štruktúry, považované nielen za matematické záhady,
ale aj za umelecké diela, majú obrovský potenciál v mnohých vedeckých oblastiach.
Vďaka rýchlemu vývoju moderných techník vizualizácie a hardvérových riešení môžeme
tieto objekty nielen presne analyzovať, ale aj vizuálne preskúmavať, čo otvára nové
možnosti pre ich výskum a praktické využitie.

Cieľom tejto práce je vyvinúť sofistikovaný softvérový systém na vizualizáciu štvor-
rozmerných fraktálov. Vďaka reprezentácii štvrtej dimenzie ako farby, môžeme zobra-
ziť štvorrozmerné fraktály v 3D prostredí. Systém používa rôzne techniky počítačovej
grafiky a vizualizačných algoritmov na dosiahnutie interaktívnych zobrazení. Systém
je navrhnutý tak, aby umožnil užívateľom nielen pasívne pozorovanie, ale aj aktívne
experimentovanie s rôznymi parametrami fraktálov, čo podporuje hlbšie pochopenie
ich štruktúry.

Táto práca je štrukturovaná do niekoľkých kľúčových kapitol. Prvá kapitola posky-
tuje prehľad teoretických základov fraktálov a hyperkomplexných čísel, kvaternionov,
pomocou ktorých sú tieto fraktály definované v štvrtej dimenzii. Druhá kapitola sa
podrobne venuje návrhu a architektúre vizualizačného softvéru. V tretej kapitole pre-
chádzame implementáciu systému, techník zobrazovania a rôznych optimalizácií. Štvrtá
kapitola sa zameriava na porovnanie zobrazovacích techník a diskusiu o výsledkoch, ku
ktorým sme v priebehu práce dospeli.

Veríme, že táto práca prispeje k rozšíreniu poznatkov v oblasti vizualizácie viacroz-
merných fraktálov a poskytne hodnotný nástroj pre výskumníkov a nadšencov, ktorí
sa zaujímajú o túto fascinujúcu oblasť.
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Kapitola 1

Východiská práce

1.1 Fraktály

Fraktály, označené počas rozvoja teórie chaosu ako “matematické monštrá”, sú neko-
nečne detailné matematické štruktúry, ktoré majú detaily na ľubovoľne malých mier-
kach. Nedajú sa popísať pomocou klasických geometrických termínov, pretože ich tvary
sú nepravidelné a zvyčajne vykazujú určitú mieru sebapodobnosti [5]. Je možné ich po-
písať pomocou iteratívnych metód, ktoré spočívajú v opakovanom aplikovaní rovnakých
matematických pravidiel na výsledky predchádzajúcich krokov.

Napriek tomu, že boli pôvodne považované za “matematické monštrá”, sú vlast-
nosti fraktálov v skutočnosti typické pre prírodu a stali sa nevyhnutnou súčasťou pri
modelovaní a simulácii prírodných javov [16].

1.1.1 Mandelbrotova množina

Mandelbrotova množina je pomenovaná po matematikovi Benoîtovi Mandelbrotovi a
je to jeden z najznámejších fraktálov, ktorý vzniká iterovaním komplexnej kvadratickej
funkcie. Definícia Mandelbrotovej množiny je určená rovnicou

zn+1 = z2n + c,

kde z a c sú komplexné čísla so začínajúcim členom postupnosti z0 = 0 + 0i. Kom-
plexné číslo c patrí do množiny, ak veľkosť postupnosti zn konverguje [5]. Vizualizáciu
Mandelbrotovej množiny môžeme vidieť na obrázku 1.1.

1.1.2 Juliina množina

Rovnako ako Mandelbrotova množina, definícia Juliinej množiny je definovaná iterova-
ním rovnakej komplexnej kvadratickej funkcie

zn+1 = z2n + c,

3



4 KAPITOLA 1. VÝCHODISKÁ PRÁCE

Obr. 1.1: Mandelbrotova množina. Komplexné čísla c sú reprezentované bodmi v rovine,
čierna farba znázorňuje body patriace do množiny.

kde z a c sú komplexné čísla s ľubovoľnou konštatou c. Komplexné číslo z patrí do mno-
žiny, ak veľkosť postupnosti zn konverguje [5]. Vizualizáciu Juliinej množiny môžeme
vidieť na obrázku 1.2.

1.2 Kvaterniony

Kvaterniony sú hyperkomplexné čísla skladajúce sa zo štyroch komponentov. Kvater-
nion q bol prvýkrát definovaný Williamom Rowanom Hamiltonom ako

q = a+ bi+ cj + dk,

kde a, b, c, d patria do množiny reálnych čísel, a zložky i, j, k sú základné jednotky
kvaternionov s týmito vlastnosťami:

i2 = j2 = k2 = ijk = −1,

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

týmto Hamilton zaviedol nový matematický koncept rozširujúci tradičné komplexné
čísla do štvorrozmerného priestoru [15].

1.2.1 Operácie s kvaternionmi

Nasledujúce operácie kvaternionov sú podrobne definované pomocou algebraických ope-
ráciií [15].
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Obr. 1.2: Juliina množina. Komplexné čísla z sú reprezentované bodmi v rovine, čierna
farba znázorňuje body patriace do množiny pre c = −0.8 + 0.156i.

Kvaterninoy sa sčítavajú a odčítavajú po zložkách, pre kvateriony q a q′ je definované
sčítanie a odčítanie ako

q + q′ = (a+ a′) + (b+ b′)i+ (c+ c′)j + (d+ d′)k,

q − q′ = (a− a′) + (b− b′)i+ (c− c′)j + (d− d′)k.

Násobenie sa prevádza distributívnym zákonom, pričom sa využívajú pravidlá ná-
sobenia zložiek i, j, k. Násobenie kvaterionov nie je komutatívne, pre kvateriony q a q′

je definované ako

qq′ = (aa′ − bb′ − cc′ − dd′)

+ (ab′ + ba′ + cd′ − dc′)i

+ (ac′ − bd′ + ca′ + db′)j

+ (ad′ + bc′ − cb′ + da′)k.

Konjugát alebo doplnok kvaternionu q = a+bi+cj+dk je definovaný ako kvaternion

q∗ = a− bi− cj − dk.

Veľkosť alebo norma kvaternionu je definovaná ako

|q| =
√
a2 + b2 + c2 + d2.

Inverzný kvaternion q−1 pre nenulový kvaternion q je definovaný ako

q−1 =
q∗

|q|2
.
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1.2.2 Kvaterniony a fraktály

Fraktály vznikajúce iterovaním komplexných rovníc, ako sú Mandelbrotova množina či
Juliina množina, môžeme rozšíriť nahradením komplexných čísel kvaternionmi. Tento
postup rozširuje dvojrozmerné fraktály na štvorrozmerné. Výsledné fraktály nemôžu
byť priamo graficky reprezentované, nakoľko ľudské vnímanie je obmedzené na tri
dimenzie, a preto musí byť štvrtá dimenzia reprezentovaná iným spôsobom [7].

1.3 Osvetlenie

Pri vizualizácii trojrozmerných štruktúr, môžeme využiť osvetlenie na zvýraznenie a
lepšie pochopenie tretej dimenzie (hĺbky) a priestorového usporiadania. Osvetlenie si-
muluje interakciu svetla s povrchom štruktúry a vytvára realistickejší vizuálny dojem.
Útlm svetla popisuje jav, kedy intenzita svetla klesá so vzdialenosťou od zdroja, vďaka
tomu pôsobia vzdialenejšie časti štruktúry tmavšie. Najbežnejšie sa používa kvadra-
tický model útlmu, ktorý je matematicky vyjadrený rovnicou

I(d) =
I0

1 + a · d+ b · d2
,

kde I(d) označuje intenzitu svetla vo vzdialenosti d od zdroja, I0 je počiatočná intenzita
svetla a koeficienty a a b určujú mieru lineárneho a kvadratického útlmu [2].

1.4 Reprezentácia viacrozmerných dát

Viacrozmerné dáta môžeme reprezentovať v 3D priestore, pričom rozmery nad treťou
dimenziou zobrazíme alternatívnymi spôsobmi. Jedným zo spôsobov je použitie farby,
kde sú ďalšie dimenzie mapované na viditeľné farebné spektrum, teda na vlnové dĺžky,
ktoré sú vnímané ľudským okom.

Transformácia vlnových dĺžok na RGB farebný model je kľúčová pre presnú vizuali-
záciu. Je nevyhnutné, aby táto premena bola dostatočne presná, aby sme čo najlepšie
napodobnili realitu a vnímanie farieb ľudským okom.

Algoritmus tejto transformácie zahŕňa aditívne miešanie základných farebných zlo-
žiek, červenej, zelenej a modrej, na dosiahnutie rôznych odtieňov. Tento prístup vy-
užíva lineárne aproximácie CIE farebných funkcií zobrazených na obrázku 1.3, ktoré
zabezpečujú efektívnu transformáciu farebných hodnôt [14]. Keďže sú tieto funkcie ap-
roximované, výsledky nie sú úplne presné, ale sú dostatočne blízke reálnym farbám a
použiteľné v reálnom čase. Táto vlastnosť je kľúčová pri spracovaní dát, kde je rýchlosť
nevyhnutná.
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Obr. 1.3: Lineárne aproximácie CIE farebných funkcií [14].

1.5 Kamera v 3D priestore

Manipulácia s kamerou v 3D priestore je kľúčovým prvkom pri tvorbe vizualizačných
a interaktívnych aplikácií, pretože umožňuje používateľom efektívnejšie vnímať troj-
rozmerný priestor aj napriek jeho zobrazeniu na dvojrozmernom displeji. Kamera je v
3D priestore definovaná bodom, kde sa nachádza, a tromi vektormi, ktoré určujú jej
orientáciu: front vektor určuje smer, kam sa kamera pozerá, up vektor definuje smer
nahor, right vektor určuje smer vpravo.

Ovládanie rotácie kamery je zabezpečené pomocou Eulerových uhlov: yaw, pitch a
roll. Yaw zabezpečuje rotáciu kamery okolo vertikálnej osi y, pitch riadi rotáciu okolo
horizontálnej osi x a roll kontroluje rotáciu okolo osi z [6].

1.6 Volumetrické zobrazovanie

Volumetrické zobrazovanie je technika využívaná na vizualizáciu objemových dát, ktoré
obsahujú informácie nielen o povrchu objektov, ale aj o ich vnútorných štruktúrach
[8]. Táto metóda nám umožňuje pozerať sa na objekty iným spôsobom, študovať ich
vnútornú charakteristiku a poskytuje pohľad na vnútorné detaily. Pri použití je dôležité
mať reprezentáciu dát vo forme objemových prvkov, voxelov.

1.6.1 Voxel

Voxel je ekvivalentom pixelu v 2D obrazoch a predstavuje malý elementárny objem v
priestore. Každý voxel je definovaný svojimi súradnicami x, y, z a môže mať priradené
ďalšie hodnoty opisujúce jeho vlastnosti [8].
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1.6.2 Fast Voxel Traversal Algorithm

Fast Voxel Traversal Algorithm je technika používaná na efektívne prechádzanie vo-
xelového priestoru. Tento algoritmus je v princípe podobný DDA (Digital Differential
Analyzer) algoritmu, ktorý sa používa na rasterizáciu úsečiek v 2D, ale je rozšírený
do 3D priestoru. Oba algoritmy využívajú prírastkové výpočty na určenie, ktorý vo-
xel alebo pixel je potrebné spracovať ďalej. Vďaka tomuto prístupu je možné rýchlo a
efektívne prechádzať voxelovým priestorom a určiť, ktoré voxely ležia na dráhe lúča.
Použitím tejto techniky sa znižuje počet potrebných operácií pri prechode z jedného
voxelu do druhého, čo zvyšuje rýchlosť a efektivitu renderovania objemových dát [3].

1.6.3 Raycasting

Raycasting je technika vykresľovania, ktorá umožňuje priame premietanie trojrozmer-
ných dát na dvojrozmerné zobrazenie. Pri tomto procese sa z pozície pozorovateľa
vysielajú lúče smerom k zobrazovacej ploche, kde každý lúč zodpovedá jednému pi-
xelu na konečnom obraze. Lúče sa pohybujú po malých krokoch a postupne získavajú
dáta a vlastnosti, ktoré spracúvajú [17]. Po prejdení určitej vzdialenosti sú výsledné
informácie reprezentované ako pixely, čím vzniká realistický obraz 3D priestoru.

1.6.4 Ray-Box Intersection

Ray-box intersection je metóda, pomocou ktorej určujeme, či sa lúč pretína s daným
objektom v priestore, týmto objektom myslíme ohraničený objem typu AABB. AABB
je jednoduchý geometrický útvar v tvare kvádra, ktorého strany sú rovnobežné s osami
súradnicového systému. Táto metóda počíta priesečníky lúča so všetkými šiestimi ro-
vinami, ktoré tvoria steny ohraničujúceho objemu [18]. Je nevyhnutným prvkom pri
použití metód ako je raycasting alebo raytracing, kde je výpočtová zložitosť veľká a
efektívne detekcie priesečníkov sú kľúčové na určovanie kolízií.

1.7 Zobrazovací kanál

Zobrazovací kanál, po anglicky známy ako rendering pipeline, je základný proces v
počítačovej grafike, ktorý zabezpečuje transformáciu 3D scén na 2D obrazy. Tento
proces zahŕňa niekoľko etáp, ktoré postupne spracúvajú geometrické dáta, materiálové
vlastnosti a ďalšie informácie. Konkrétne etapy a ich poradie sa môžu líšiť v závislosti
od použitého softvéru a zvoleného spôsobu zobrazovania.



1.7. ZOBRAZOVACÍ KANÁL 9

1.7.1 OpenGL

OpenGL je štandardizované rozhranie API (Application Programming Interface) pre
2D a 3D grafiku, ktoré umožňuje vývojárom na rôznych platformách vytvárať gra-
ficky náročné aplikácie. Využíva sa v mnohých odvetviach, ako sú vývoj hier, virtuálna
realita, CAD systémy a vizualizácia vedeckých dát.

Hlavnou výhodou je schopnosť priamej spolupráce s grafickými kartami a využívanie
ich akceleračných funkcií, čo umožňuje dosiahnuť vyšší výkon [9]. OpenGL zobrazovací
kanál a jeho jednotlivé etapy možno vidieť na obrázku 1.4.

Shader programy

V OpenGL sú shader programy neoddeliteľnou súčasťou zobrazovacieho procesu. Sú
to programy napísané v jazyku GLSL (OpenGL Shading Language), ktoré umožňujú
priamu manipuláciu s grafikou na hardvérovej úrovni [9]. Existujú rôzne typy shader
programov, pričom každý je zameraný na špecifickú fázu vykresľovacieho procesu:

• Vertex shader sa zaoberá spracovaním jednotlivých vrcholov a vykonáva trans-
formácie vrcholov do priestoru po projekcii, môže byť použitý aj pre iné operácie
s vrcholmi, ktoré pokračujú do ďalších etáp.

• Tessellation shader umožňuje vytvárať vyšší stupeň detailov na geometrických
tvaroch bez potreby zvyšovania počtu vrcholov v pôvodnom modeli, a to pomocou
rozdeľovania vrcholových dát na menšie primitíva.

• Geometry shader umožňuje spracovanie celej primitívy, ako sú trojuholníky
alebo čiary, môže zmeniť počet a tvar primitív alebo generovať novú geometriu.

• Fragment shader je kľúčový pri vizualizácii finálneho obrazu, pretože na pixe-
lovej úrovni manipuluje s jednotlivými fragmentami a ich vlastnosťami, ako sú
farba a hĺbka. Každý fragment je spracovaný osobitne a nezávisle od ostatných,
čo umožňuje vysokú úroveň paralelizácie.

• Compute shader je špeciálny typ shader programu v OpenGL, ktorý sa po-
užíva výhradne na výpočty nezávislé od tradičného renderovania grafiky. Tento
shader program je ideálnym nástrojom pre komplexné vedecké výpočty, vďaka
jeho efektívnemu spracovaniu dát a rýchlym výpočtom.

Uniformné premenné sú dôležitým prvkom shader programov, ktoré umožňujú pre-
nos konštantných hodnôt z CPU do GPU. Tieto premenné sú definované v shader
kóde a ich hodnoty zostávajú nemenné počas vykonávania shader programu pre všetky
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Obr. 1.4: OpenGL zobrazovací kanál [10].

spracovávané vrcholy alebo fragmenty. Uniformné premenné sa často používajú na pre-
nos maticových transformácií, svetelných parametrov alebo iných globálnych stavových
informácií, ktoré sú potrebné na vykreslenie scény.

Proces presunu uniformných premenných z CPU do GPU zahŕňa niekoľko krokov,
ako je získavanie lokácií uniformných premenných a nastavenie premenných. Tento
proces umožňuje efektívne riadenie zobrazovacieho kanála a dynamické aktualizovanie
parametrov renderovania bez potreby prerušovania práce GPU [9].

1.7.2 Vulkan

Vulkan je nízkoúrovňové API pre grafiku, ktoré poskytuje väčšiu kontrolu nad hardvé-
rovými zdrojmi v porovnaní s OpenGL. Táto kontrola umožňuje vývojárom optimali-
zovať výkon a efektívnejšie spravovať pamäť, čo je kritické pre vysoko náročné grafické
aplikácie. Vulkan podporuje širokú škálu platforiem, ako sú Windows, Linux a Android,
čo z neho robí ideálne riešenie pre multiplatformový vývoj [11].

1.7.3 DirectX

DirectX je súbor API od Microsoftu, ktorý sa využíva na vývoj multimediálnych ap-
likácií, najmä hier, na platformách Windows. Obsahuje rôzne komponenty, z ktorých
najznámejším je Direct3D pre 3D grafiku. Direct3D je špecificky navrhnutý pre opti-
malizáciu na systémoch Windows a poskytuje vývojárom kontrolu nad hardvérovými
zdrojmi. Táto nízkoúrovňová kontrola umožňuje zlepšenie výkonu, ale zároveň zvyšuje
jeho náročnosť [13].
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Obr. 1.5: Aplikácia Mandelbulb3D.

1.8 Existujúce riešenia

Vizualizácia fraktálov spája matematiku s umeleckým vyjadrením a počítačovou grafi-
kou. V oblasti 2D, 3D a 4D fraktálov existujú rôzne systémy, ktoré vizualizujú fraktály
rôznymi technikami a optimalizáciami vzhľadom na komplexnosť výpočtov. Tieto sys-
témy prezentujú estetiku fraktálov a zároveň poskytujú nástroje pre vedecké analýzy,
ktoré umožňujú objavovanie nových vzorov a štruktúr.

1.8.1 Mandelbulb3D

Jeden z najpopúlarnejších systémov je Mandelbulb3D, umožňuje používateľom pries-
kum a renderovanie fraktálnych štruktúr v trojrozmernom priestore. Na vykresľovanie
používa techniku raymarching, ktorá vysiela lúče po ktorých sa postupne pohybuje
odhadom vzdialenosti od fraktálu [4]. Zároveň ponúka pokročilé možnosti osvetlenia a
textúrovania, ktoré pridávajú realistickú hĺbku a detail. Ukážku tejto aplikácie môžeme
vidieť na obrázku 1.5.

1.8.2 Mandelbulber2

Tento systém poskytuje známe variácie fraktálov, ako napríklad Mandelbox, Bulbbox
a Juliabulb. Umožňuje prehliadanie 3D fraktálov v reálnom čase a podobne ako Man-
delbulb3D využíva techniku raymarching [12].
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Kapitola 2

Návrh práce

V tejto kapitole sa podrobne zaoberáme návrhom, výberom technológií, ktoré sú do-
stupné a vhodné pre náš systém, architektúrou aplikácie na vizualizáciu viacrozmerných
fraktálov, konkrétne fraktálov definovaných nad kvaternionmi v štvorrozmernom pries-
tore. Hlavným cieľom je poskytnúť detailný prehľad jednotlivých častí systému a ich
procesov pre správne fungovanie aplikácie. Táto kapitola slúži nielen ako implemen-
tačný základ, ale aj ako základ pre budúci vývoj a inšpirácia pre ďalších vývojárov
zaoberajúcich sa podobnými systémami.

2.1 Výber technológie

Na grafickú vizualizáciu viacrozmerných fraktálov potrebujeme technológiu, ktorá do-
káže využívať GPU a umožní ich zobrazenie v reálnom čase. Pri výbere je kritické, aby
sme mali určitú kontrolu nad hardvérom a mohli experimentovať s rôznymi zobrazova-
cími technikami.

Existujú systémy ako Unity alebo Unreal Engine 5, ktoré poskytujú množstvo ná-
strojov, ale často obmedzujú flexibilitu vývoja. Medzi technológie vyhovujúce našim
požiadavkám patria OpenGL, Vulkan a Direct3D.

Po dôkladnom zvážení sme sa rozhodli vyvinúť našu aplikáciu s použitím OpenGL
kvôli výbornej dokumentácii a širokej podpore na rôznych platformách. Z dostupných
verzií OpenGL sme si vybrali najnovšiu, verziu 4.6, ktorá nám umožňuje používať
compute shader. Použitie compute shader programu je kľúčovým bodom pre efektívne
spracovanie fraktálov a zohráva podstatnú rolu v našej aplikácii.

Pri zvažovaní technológie Vulkan sme sa kvôli jeho vyššej vstupnej náročnosti a
zložitosti rozhodli uprednostniť jednoduchší a flexibilnejší prístup OpenGL. DirectX je
tiež výborným nástrojom, ale neponúka multiplatformový vývoj, nakoľko je kompati-
bilný len s platformami Windows.

13
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2.1.1 Knižnice

OpenGL často vyžaduje pridanie dodatočných knižníc pre efektívnejší vývoj a správu
základných operácií. Na poskytnutie dobrého základu a zjednodušenie týchto úloh sme
sa rozhodli použiť nasledujúce knižnice:

• GLAD (OpenGL Loading Library) je nástroj, ktorý poskytuje dynamický me-
chanizmus na generovanie kódu potrebného na prístup k funkcionalitám OpenGL,
keďže OpenGL je platformovo rozmanité API, ktoré samo osebe nespravuje načí-
tanie svojich funkcií z hardvéru [9]. Tento prístup nám umožňuje implementovať
funkcie OpenGL bez nutnosti zaoberania sa kompatibilitou na rôznych operač-
ných systémoch a grafických kartách.

• GLFW poskytuje jednoduché rozhranie pre vytváranie okien, získavanie vstupov
z klávesnice, myši, alebo iných vstupných zariadení a správu kontextov OpenGL
[1].

• Dear ImGui je knižnica na tvorbu grafických používateľských rozhraní, ktorá
nám umožňuje integrovať interaktívne a dynamické používateľské rozhranie do
našej aplikácie. Táto knižnica je často využívaná v hernom vývoji, pretože po-
skytuje množstvo preddefinovaných komponentov.

2.2 Architektúra aplikácie

2.2.1 Vytvorenie a konfigurácia projektu

Pri návrhu a vývoji našej aplikácie sme sa rozhodli použiť Visual Studio, pretože toto
integrované vývojové prostredie (IDE) poskytuje veľkú podporu pre programovanie v
jazyku C++. Hlavným cieľom pri konfigurácii nášho projektu bolo zabezpečiť vysokú
prenositeľnosť a minimalizovať potrebu externých inštalácií. Aby sme dosiahli tieto
požiadavky, všetky potrebné knižnice sú priamo integrované do projektu, čo umožňuje
jeho ľahký prenos a spustenie na inom systéme, ktorý obsahuje Visual Studio.

2.2.2 Triedny diagram

Na obrázkoch 2.1 a 2.2 je zobrazený triedny diagram, ktorý poskytuje vizuálny prehľad
o štruktúre aplikácie a slúži na lepšie pochopenie vzťahov a funkcií jednotlivých častí,
ktoré systém obsahuje.

Popis jednotlivých tried a ich funkcií:
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• Application je jadro aplikácie, ktoré inicializuje OpenGL a spravuje hlavný cyk-
lus vykonávania programu. Tento cyklus zabezpečuje neustále bežanie programu
a koordinuje všetky hlavné procesy.

• Camera je zodpovedná za navigáciu a orientáciu v 3D priestore. Vektory, ktoré
používa na určenie pozície a uhly na rotáciu dynamicky reagujú na používateľské
vstupy.

• Window zabezpečuje inicializáciu a správu hlavného okna aplikácie, do ktorého
sa vykresľuje grafický obsah. Spravuje vlastnosti okna ako sú rozmery a zmeny
rozmerov používateľom.

• Uniforms je trieda obaľujúca všetky premenné a dáta, s ktorými aplikácia počas
svojho behu pracuje. Umožňuje ľahkú prácu s premennými a ich manipuláciu.
Zároveň slúži na prepojenie a aktualizáciu uniformných premenných používaných
v shader programoch a pracuje s úložiskom potrebným pre výsledky vypočítané
cez compute shader.

• GUI implementuje funkcionality knižnice Dear ImGui pre vytvorenie interaktív-
neho používateľského rozhrania. Táto trieda umožňuje používateľom interaktívnu
manipuláciu s grafickou vizualizáciou.

• VFShader je trieda zodpovedná za správu vertex a fragment shader programu.
Zabezpečuje kompiláciu a vytvorenie shader programu z načítaných súborov.

• Compute je trieda, ktorá spravuje compute shader program podobne ako trieda
VFShader. Zabezpečuje kompiláciu a zodpovedá za jeho spustenie na GPU.

• VBO (Vertex Buffer Object) je zodpovedná za uchovávanie vrcholových dát v
grafickej pamäti a umožňuje rýchlejšie vykresľovanie [9].

• VAO (Vertex Array Object) slúži ako kontajner pre mnoho VBO a definuje for-
mát vrcholových dát uložených vo VBO [9].

• EBO (Element Buffer Object) sa používa spolu s VBO na efektívne ukladanie
indexov, ktoré definujú, ako sú vrcholy spojené do primitív (trojuholníky alebo
čiary) [9].

Časti VBO, VAO a EBO sú nevyhnutné aj v prípadoch, kedy aplikácia nepoužíva
explicitné vrcholy alebo komplexné geometrie ako je to v našej aplikácií. OpenGL
vyžaduje definované vrcholy a indexy pre renderovanie obrazu, je dôležité mať tieto
základné komponenty pre správny výstup.
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Obr. 2.1: Triedny diagram časť 1.
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Obr. 2.2: Triedny diagram časť 2.

2.2.3 Používateľské rozhranie

Jedným z cieľov našej aplikácie je poskytnúť používateľom interaktívne používateľské
rozhranie, ktoré im umožní pohybovať sa v priestore a prehliadať zobrazovanú štruk-
túru.

Návrh používateľského rozhrania

Po otvorení aplikácie sa používateľovi zobrazí interaktívne okno. Toto okno obsahuje
jednotlivé sekcie, ktoré spravujú nastavenia fraktálu, farby, rezov štvrtej dimenzie,
scény a renderovania obrázkov.

Popis jednotlivých sekcií:

• Nastavenia fraktálu: Táto sekcia umožňuje používateľovi vybrať z preddefino-
vaných fraktálov, ako sú Mandelbrotova a Juliina množina. Obsahuje nastavenia,
ako sú počet iterácií, mocnina fraktálu a ďalšie možné nastavenia, ktoré sú špe-
cifické pre vybraný fraktál.

• Nastavenia farby: Umožňuje zobraziť farbu štvrtej dimenzie a nastaviť osvet-
lenie fraktálov. Osvetlenie je dostupné len pri povrchovom zobrazení fraktálu.
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• Nastavenia rezov: Umožňuje nastaviť rezy štvrtej dimenzie. Používatelia si
môžu zvoliť interval rezov alebo nastaviť jednotlivé rezy manuálne, pričom je
možné rezy pridávať alebo odoberať.

• Nastavenia scény: Poskytuje výber renderovacej techniky a s ňou spojené špe-
cifické nastavania. Ďalej ponúka výber medzi povrchovým alebo volumetrickým
zobrazovaním.

• Nastavenia renderovania: Umožňuje renderovať obrázky vo zvolenom rozlí-
šení a poskytuje možnosti na úpravu detailov, ktoré sa aplikujú len na výsledný
obrázok.

Všetky nastavenia budú využívať komponenty, ktoré obsahuje knižnica Dear Im-
Gui, a každá sekcia bude obsahovať tlačidlá pre resetovanie nastavení, čo umožňuje
používateľom rýchlo vrátiť konfiguráciu do východiskového stavu.

2.2.4 Dátový tok

Pre správne fungovanie aplikácie je nevyhnutné zabezpečiť plynulý tok dát medzi rôz-
nymi komponentami systému. Správna manipulácia a koordinácia dát sú kľúčové pre
predchádzanie potenciálnym problémom.

Tok dát v našej aplikácii prechádza nasledujúcimi krokmi:

1. Inicializácia dát: Pri spustení aplikácie sa pred hlavným cyklom programu ini-
cializujú všetky premenné konštatami.

2. Vstup od používateľa: Používateľ má k dispozícii grafické rozhranie na prácu
s aplikáciou. Vstupy sú prijímané cez toto rozhranie a pomocou klávesnice a myši.

3. Aktualizácia dát: Pred každým príkazom na vykreslenie sa aktualizujú všetky
dáta bez ohľadu na ich zmenu, tieto dáta sa potom posielajú do aktivovaného
shader programu cez uniformné premenné.

4. Spracovanie shader programom: Po poslaní uniformných premenných môže
shader program pracovať s aktualizovanými dátami. Shader program spracúvava
tieto dáta a vytvára grafický výstup.

5. Výstup: Výsledné grafické dáta sú zobrazené na obrazovke.

2.2.5 Shader programy a ich riadenie

Aplikácia bude obsahovať tri hlavné shader programy, ktoré je v rámci architektúry na-
šej aplikácie dôležité správne riadiť a koordinovať. Na začiatku aplikácie sa inicializujú
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všetky tri shader programy. Tieto programy budú pripravené na spustenie v závislosti
od ich potreby.

Jeden shader program je fragment shader, ktorý je aktívny väčšinu času počas behu
aplikácie a stará sa o vizualizáciu scény v okne aplikácie. Ďalšie dva budú compute sha-
der programy, jeden na vypočítavanie obrázkov a druhý na prepočítavanie voxelových
dát. Compute shader programy sú spúšťané na požiadanie, keď je potrebné vykonať
náročnejšie výpočty.

Prepínanie shader programov

OpenGL dovoľuje bežanie len jedného shader programu súčasne. Pri potrebe zmeny
z fragment na compute shader systém najprv deaktivuje bežiaci fragment shader a
spustí compute shader. Ideálnym spôsobom by bolo vykonávať čiastkové výpočty cez
compute shader, pretože výpočet môže trvať dlhšiu dobu, a poskytovať tieto dáta
fragment shader programu. Avšak tento prístup by mohol viesť k nekonzistencii dát v
dôsledku častých zmien parametrov od používateľa. Riešením tohto problému je proces,
ktorý umožňuje aplikácii zastaviť sa a počkať na dokončenie výpočtov compute shader
programu predtým, ako aktivuje fragment shader program. Tento návrh zabezpečuje,
že všetky spracované dáta sú konzistentné a kompletné. Každý shader program môže
efektívne vykonávať svoju funkciu bez negatívneho ovplyvnenia a narušenia ostatných.
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Kapitola 3

Implementácia

V tejto kapitole si podrobne rozoberieme implementačné detaily našej aplikácie a im-
plementujeme rôzne techniky na vizualizáciu štvorrozmerných fraktálov. Popíšeme kon-
krétne kroky a techniky použité v procese vývoja, ktoré nás dovedú od začiatočných
fáz až po finálnu verziu aplikácie. Okrem technických aspektov sa zameriame aj na
optimalizácie, ktoré zvyšujú efektivitu a výkon našej aplikácie.

3.1 Využitie zobrazovacieho kanálu

Pri implementácii našej aplikácie sme sa zamerali na efektívne využitie zobrazovacieho
kanálu. Zobrazovací kanál OpenGL ponúka viacero úrovní spracovania, ktorých úprava
a implementácia nebola potrebná. Všetka logika pre zobrazenie je integrovaná v jedinom
fragment shader programe, ktorý priamo manipuluje s obrazovými dátami na úrovni
fragmentov.

3.2 Transformácia súradníc

Fragment shader dostáva na vstupe súradnice pixelov, ktoré sú definované rozmerom
okna, v ktorom je aplikácia spustená. Tieto súradnice určujú, pre ktorý pixel sa vypo-
čítavajú grafické vlastnosti.

Proces transformácie súradníc je kľúčovým krokom, ktorý zjednodušuje nasledujúce
fázy zobrazovania a je štandardne implementovaný v mnohých grafických systémoch.
Implementujeme konverziu súradníc z ich pôvodnej formy do normalizovanej formy. Pri
tejto transformácii sa súradnice premapujú tak, aby pokrývali interval od −1 po 1 pre
obe osi, x aj y. Aby sme predišli vizuálnej deformácii v dôsledku neštvorcových rozme-
rov okna, prispôsobíme os x pre zachovanie pomeru strán obrazovky. Po transformácii
súradníc sa bod [0, 0] nachádza presne v strede obrazovky.
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3.3 Smer lúča

Pomocou normalizovaných súradníc pixelov a orientačných vektorov kamery vypočíta-
vame smer lúča pre každý pixel. Tento proces nám umožňuje efektívne prechádzať scénu
tretím rozmerom a vizualizovať priestor. Smer lúča začína na pozícii kamery a simuluje
perspektívu ľudského oka, čo je kľúčové pre dosiahnutie realistického zobrazenia.

3.4 Výpočet fraktálu

Pre zobrazenie štvrorozmerného fraktálu do 3D priestoru používame výpočet fraktálu
pomocou kvaternionových funkcií. Výpočet vykonávame rovnako ako v komplexnej
rovine, používame iteratívnu funkciu, ktorú iterujeme zvoleným počtom iterácií.

Ukážka výpočtu je znázornená v algoritme 3.1, ktorý popisuje výpočet Mandelb-
rotovej množiny definovanej nad kvaternionmi. Algoritmus vracia príslušnosť vstup-
ného kvaternionu c k Mandelbrotovej množine, kde prvé tri súradnice x, y, z predsta-
vujú pozíciu v 3D priestore a štvrtá súradnica w predstavuje štvrtú dimenziu. Funkcia
qPower(q, n) umocňuje kvaternion q na mocninu n, qNorm(q) vracia veľkosť kvater-
nionu q, iterations je počet iterácií a bailout je hodnota, ktorá určuje hranicu pre
zastavenie iterácie, ak veľkosť kvaternionu presiahne túto hodnotu.

Algoritmus 3.1: Algoritmus na výpočet príslušnosti bodu k fraktálu.

bool f r a c t a l ( vec4 c ) {
q = vec4 ( 0 . 0 ) ;
for ( int i = 0 ; i < i t e r a t i o n s ; i++) {

q = qPower (q , n) + c ;
i f (qNorm(q ) > ba i l ou t ) {

return f a l s e ;
}

}
return t rue ;

}

3.5 Prechádzanie scény

Pre každý pixel na obrazovke sme si pripravili smer lúča a máme pozíciu kamery, vďaka
týmto parametrom sa môžeme malými krokmi pohybovať po lúči a zbierať informácie
z 3D priestoru, ktoré vykazuje daný fraktál.

Hoci je táto technika široko používaná pre jej jednoduchosť, má svoje nevýhody.
Jeden z problémov ktorý nastáva, je že pozícia kamery môže byť vzdialená od zau-
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jímavých častí fraktálu a počet krokov musí byť výrazne vyšší, čo spôsobuje vysokú
výpočtovú náročnosť.

3.5.1 Optimalizácia

Aby sme minimalizovali túto náročnosť a zefektívnili vizualizáciu, definovali sme ne-
mennú obálku priestoru [−1, 1]3, v ktorej sa zobrazujú všetky výpočty. Všetko mimo
tejto obálky ignorujeme. Vďaka použitiu algoritmu Ray-Box Intersection môžeme efek-
tívne určiť, ktoré lúče prechádzajú obálkou a ktoré nie. Ak lúč neprechádza touto obál-
kou, pixelu priradíme farbu pozadia. Ak lúč prechádza obálkou, vstupujeme do obálky
v mieste prvého priesečníka a pokračujeme v smere lúča až po jej koniec. Na obrázku
3.1 možno vidieť danú obálku, v ktorej zobrazujeme výpočty.

Obr. 3.1: Obálka v ktorej prebieha výpočet fraktálu.

Obálka je nemenná, táto vlastnosť zabezpečuje konzistentné zobrazenie fraktálu
vždy na rovnakom mieste.

Obálka nedefinuje hodnoty fraktálu, ktoré počítame, pri nájdení priesečníku trans-
formujeme body na požadovaný úsek ktorý chceme vypočítať. Tento postup umožňuje
pozorovanie rôznych častí fraktálu na rôznych mierkach bez potreby prispôsobovať roz-
sah pozorovania alebo upravovať pohyb kamery.
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Obr. 3.2: Fraktál bez farby a osvetlenia.

3.6 Farba a Osvetlenie Fraktálu

Farbu používame na reprezentáciu dodatočnej štvrtej dimenzie, ktorej detaily by boli
inak nemožné rozlíšiť. Pri neaplikovaní farby nevieme o štvrtej dimenzii nič iba hodnotu
pre ktorú sa vypočítava.

Pre transformáciu štvrtej dimenzie fraktálu na farbu, využívame metódu založenú
na mapovaní intervalu [−1, 1] na vlnové dĺžky v rozmedzí od 380 do 780 nanometrov,
tento rozsah pokrýva celé viditeľné spektrum, od fialovej po červenú. Transformácia na
konkrétne farby je realizovaná algoritmom od tvorcov Dragoş Mihai a Eugen Străjescu,
ktorý je podrobne opísali v práci [14].

Použitie osvetlenia pridáva hĺbku do obrazu a zvyšuje realistickosť zobrazenia. Náš
výpočet negeneruje geometriu povrchu, preto nie sú dostupné normálové vektory pre
výpočet interakcie fraktálu a svetla. Osvetlenie, ktoré zlepšuje chápanie tretej dimenzie
sme preto implementovali pomocou kvadratického modelu útlmu svetla. Tento model
zohľadňuje vzdialenosť svetelného zdroja od bodov fraktálu, kde intenzita svetla klesá
s rastúcou vzdialenosťou od zdroja.

Ukážku rozdielu medzi nepoužitím a použitím týchto techník na zlepšenie realistic-
kosti je možné videiť na obrázkoch 3.2 a 3.3.
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Obr. 3.3: Fraktál s farbou a osvetlením.

3.7 Povrchové a volumetrické zobrazenie

Fraktály môžeme zobraziť viacerými spôsobmi, pričom každá ponúka unikátne pohľady
a informácie o štruktúre fraktálu.

Povrchové zobrazenie

Pri povrchovom zobrazení sa sústredíme na zobrazenie vonkajšej hranice fraktálu. Lúč
vychádzajúci z kamery prechádza scénou a je postupne testovaný na prítomnosť frak-
tálu. Výpočet sa zastaví, keď lúč narazí na prvý bod, ktorý je súčasťou fraktálu. Tento
prístup zjednodušuje výpočet tým, že sa zameriava len na najbližšie hraničné body
fraktálu pozdĺž lúča. Každý pixel obrazovky teda reprezentuje najbližší povrchový bod
fraktálu voči pozícii pozorovateľa. Ukážku povrchového zobrazenie môžeme vidieť na
obrázku 3.3, na obrázku je znázornená aj farba štvrtej dimenzie, ktorá je fixná a zo-
brazuje jeden rez štvrtej dimenzie.

Volumetrické zobrazenie

Pri volumetrickom zobrazovaní prechádzame celým objemom, teda obálkou ktorú sme
definovali pre zobrazenie výpočtov. Lúč vychádzajúci z kamery prechádza fraktálom a
spočítava farby všetkých bodov, ktorými prejde. Spočítaná farba sa vydelí počtom kro-
kov, ktorými prechádzame cez obálku, delením dosiahneme priemernú hodnotu farby .
Ukážku volumetrického zobrazenia môžeme vidieť na obrázku 3.4.
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Obr. 3.4: Volumetrické zobrazenie fraktálu.

3.8 Implementácia voxelov

Doterajší postup zobrazovania fraktálov v našej aplikácií má významné nevýhody, ako
je potreba opakovaného výpočtu fraktálu pre každú snímku. Tento proces je neprak-
tický a neefektívny, najmä keď technika postupného pohybu po lúči môže preskočiť
oblasti, kde by sa mohol fraktál nachádzať. Tento prístup tiež vedie k nekonzistencii
zobrazenia, keďže z rôznych uhlov môžeme zachytiť odlišné detaily.

Na riešenie týchto problémov sme zvolili predspracovanie dát fraktálu v compute
shader programe. Tento program vypočíta fraktál pre každý voxel pre danú veľkosť vo-
xelovej mriežky, na ukladanie dát používa 3D texture buffer, ktoré po skončení výpočtov
následne využije fragment shader pre vizualizáciu. Compute shader počíta prítomnosť
fraktálu v danom bode, ak je fraktál prítomný, potom uložíme farbu štvrtej dimenzie,
ktorá zaberá 24bitov pamäte pre každý voxel.

Na zefektívnenie procesu vizualizácie voxelových dát sme implementovali techniku,
známu ako Fast Voxel Traversal Algorithm, ktorá sa neposúva po lúči ale po jednotli-
vých voxeloch vo voxelovom priestore. Ukážku reprezentácie fraktálu pomocou voxelov
môžeme vidieť na obrázku 3.5.

Tento postup nám umožňuje vyhnúť sa opakovanému výpočtu a zároveň eliminuje
nekonzistenciu v zobrazení fraktálu z rôznych perspektív.
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Obr. 3.5: Zobrazenie fraktálu voxelmi.

3.9 Renderovanie obrázkov

Renderovanie obrázkov vo vysokom rozlíšení je považované za kľúčovú vlastnosť kaž-
dého vizualizačného systému. Naša implementácia využíva compute shader, ktorý fun-
guje podobne ako fragment shader. Hlavný rozdiel spočíva v tom, že compute shader
vypočíta výstupné dáta len raz a uchováva ich v pamäti.

Na rozdiel od fragment shader programu, compute shader prijíma na vstupe súrad-
nice pixelov, ktoré však korešpondujú s rozlíšením finálneho obrázku, nie okna aplikácie.
Tento postup umožňuje výpočet obrázkov s použitím techniky postupného posúvania
po lúči, kde sa obraz vykresľuje po malých krokoch. Ďalej sme implementovali ďalšie
nastavenia, ako je určenie počtu krokov, čo umožňuje renderovanie obrázka s vysokým
detailom.

Po dokončení všetkých výpočtov sa na základe vytvorí obrázok formátu .png. Ukla-
danie obrázkov prebieha automaticky a v hlavnom projekte sa vytvára priečinok output,
z ktorého si môžu používatelia ľahko obrázky prezerať.

3.10 Používateľské rozhranie

Používateľské rozhranie bolo navrhnuté tak, aby umožnilo používateľom pohodlne pre-
zeranie a experimentovanie s rôznymi typmi fraktálov. Hlavné rozhranie je rozdelené do
viacerých sekcii, ktoré umožňujú detailné nakonfigurovanie fraktálu a využívanie rôz-
nych zobrazovacích techník. Ukážku rozhrania môžeme vidieť na priloženom obrázku
3.6.

Implementácia tohto rozhrania bola vykonaná s využitím knižnice Dear ImGui,
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Obr. 3.6: Používateľské rozhranie.
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ktorej existujúce komponenty boli postačujúce na jeho vytvorenie. Rozhranie obsahuje
intuitívne ovládacie prvky, ktoré sú zoskupené tematicky podľa ich funkcie a účelu.

Nastavenie fraktálu

Sekcia nastavenie fraktálu umožňuje používateľovi vybrať si z rôznych preddefinova-
ných fraktálov prostredníctvom rozbaľovacieho menu, implementovali sme nastavenia
pre najznámešie množiny ako je Mandelbrotova množina a Juliina množina. Po výbere
konkrétneho fraktálu sa zobrazia jeho špecifické nastavenia.

Medzi tieto nastavenia patrí počet iterácií, mocnina, ktorou je fraktál umocnený
a bod, ktorý ovplyvňuje vizualizovaný fraktál. Užívateľ má možnosť upravovať tieto
hodnoty pomocou posuvníkov. Posuvníky obsahujú vždy minimálnu a maximálnu hod-
notu.

Nastavenie farby

Nastavenia farby umožňujú prispôsobiť vizuálnu reprezentáciu štvrtej dimenzie a zlep-
šiť vnímanie tretej dimenzie pomocou osvetlenia. Tieto voľby sa aktivujú pomocou
zaškrtávacích políčok. Pri použití osvetlenia sa sprístupnia ďalšie nastavenia pre úp-
ravu polohy svetelného zdroja v scéne.

Pri volumetrickom zobrazení sa sprístupní ďalšie nastavenie na úpravu intenzity
farby každého zobrazovaného bodu. Táto funkcia bola pridaná z dôvodu nízkej viditeľ-
nosti fraktálov, ktoré tvoria len malú časť zobrazovaného priestoru.

Nastavenia rezov

V nastaveniach rezov existujú dve možnosti. Prvou možnosťou, ktorá je predvolená
pri spustení aplikácie, je pridávanie a odoberanie jednotlivých rezov pomocou tlačidiel
+ a −. Jednotlivé rezy je možné odoberať a pridávať, nastavenie rezu je ovládané
posuvníkom. Druhou možnosťou je výber intervalu, z ktorého sa rezy vyberú a počtu
rezov, ktoré sa v tomto intervale zobrazia.

Nastavenia scény

Nastavenia scény ponúkajú najrozsiahlejšie možnosti. Používateľ si môže vybrať tech-
niku zobrazenia fraktálu. Pri voľbe možnosti calculations sa fraktál zobrazuje postup-
ným pohybom pozdĺž lúča, počet týchto krokov je možné upravovať pomocou posuv-
níka. Ďalšou technikou je zobrazenie fraktálu ako voxelov voxels, výber tejto tech-
niky spúšťa funkciu, ktorá aktivuje compute shader na prepočítanie voxelov a nahradí
možnosť výberu počtu krokov výberom veľkosti voxelovej mriežky v priestore, pro-
stredníctvom rozbaľovacieho menu. V oboch technikách sú k dispozícii povrchové a
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volumetrické zobrazenia.
Pri voľbe voxels sa zobrazí tlačidlo recalculate, pretože časté prepočítavanie fraktálu

pri každej zmene nastavení je nepraktické. Po nakonfigurovaní požadovaného fraktálu
je potrebné kliknúť na toto tlačidlo, aby sa voxely fraktálu znovu prepočítali.

Pomocou nastavení start a size je možné posúvať fraktálom v priestore a zobrazovať
ľubovoľnú časť fraktálu, tieto možnosti sú implementované posuvníkmi.

Nastavenie renderovania

Nastavenia renderovania umožňujú používateľovi vytvoriť obrázok fraktálu s vysokým
rozlíšením a detailom. K dispozícii je rozbaľovacie menu s preddefinovanými rozlíše-
niami, z ktorých si používateľ môže vybrať.

Ďalej sú k dispozícii dve možnosti: kopírovanie nastavení rezov alebo kopírovanie
počtu krokov. Tieto funkcie boli pridané z dôvodu vysokej náročnosti pri zobrazovaní
veľkého počtu rezov a krokov v reálnom čase. Používateľ si tak môže nakonfigurovať
vlastné nastavenia rezov a krokov, ktoré sa použijú len na vyrenderovaný obrázok.

3.10.1 Pohyb kamery

Pohyb kamery v priestore reaguje na vstupy klávesnice a myši. Pohyby hore, doľava,
dole, doprava ovládajú klávesy W, A, S, D, pomocou kolieska myši sa posúvame dopredu
alebo dozadu. Priblíženie sa ovláda stlačením klávesy CTRL a kolieskom myši, tento
vstup aktualizuje zorné pole kamery a po pustení klávesy CTRL sa vrátime na pôvodné
nastavenie zorného poľa. Stlačenie a držanie ľavého tlačidla myši, spolu s pohybom
myši, umožňuje rotáciu kamery okolo aktuálnej pozície.
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Výsledky

Táto kapitola je venovaná prezentácii a diskusii o výsledkoch dosiahnutých počas vý-
voja a implementácie nášho vizualizačného softvéru. Zvláštny dôraz kladieme na hod-
notenie výpočtovej a pamäťovej zložitosti rôznych zobrazovacích techník, ktoré sme
implementovali. Analyzujeme, ako jednotlivé prístupy ovplyvňujú výkon aplikácie a
kvalitu zobrazenia fraktálov. Výsledky sú podložené kvantitatívnymi údajmi a vizuál-
nymi príkladmi.

4.1 Porovnanie zobrazovacích techník

Pre lepšie porozumenie údajov označíme metódu výpočtov pozdĺž lúča ako VPL a
metódu zobrazovania voxelov ako MZV. Tieto dve metódy sa zásadne líšia vo svo-
jich prístupoch a v detaile, ktorý poskytujú. Pre ich efektívne porovnanie sme navrhli
testovacie prostredie, ktoré priblíži ich zložitosť a schopnosť zobrazovať detaily.

4.1.1 Testovacie prostredie

Využívame prostredie s konštantnými rozmermi zobrazovacieho okna 512x512 pixelov.
Kamera je umiestnená tak, aby fraktálna štruktúra bola zobrazená cez celú obrazovku.
Pre VPL stanovíme konštantný počet krokov na 512, zatiaľ čo pre MZV nastavíme
voxelovú mriežku o rozmeroch 512x512x512. Týmto zaistíme, že každý pixel obra-
zovky bude reprezentovaný jedným voxelom, čo umožní rovnaké podmienky pre obi-
dve metódy. Tento prístup zaručuje, že výsledky metód sú porovnateľné. Tabuľka 4.1
zobrazuje výsledky testovania, ktoré bolo vykonané na grafickej karte RTX 3060, pri
použití volumetrického zobrazenia kvaternionovej formy Mandelbrotovej množiny s 32
iteráciami a umocnením na druhú.

31
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Tabuľka 4.1: Doba a pamäť potrebná pre výpočet jedného snímku s daným počtom
rezov štvrtej dimenzie.

Metóda Počet rezov Čas (ms) Pamäť (MB)
VPL 1 17 0

3 55 0
10 180 0

MZV 1 7 384
3 7 384

10 7 384

4.1.2 Efektívnosť a pamäťová zložitosť

Pri porovnávaní Metódy VPL a metódy MZV je dôležité poznamenať, že každá z nich
má svoje špecifické výhody a nevýhody. Ako je zrejmé z údajov v tabuľke 4.1, Metóda
VPL je časovo náročnejšia, pričom doba potrebná na vykreslenie jedného snímku sa vý-
razne zvyšuje s počtom rezov štvrtej dimenzie. Napriek tomu, táto metóda nevyžaduje
uchovávanie dodatočných dát v pamäti.

Metóda MZV si vyžaduje veľký objem pamäte na ukladanie predpočítaných vo-
xelových dát. Pamäťové požiadavky sú konštantné bez ohľadu na počet rezov, keďže
pamäť obsahuje len finálnu farbu voxelov. Táto metóda poskytuje výhodu v rýchlosti
zobrazenia, pretože počas samotného renderovania nie sú potrebné ďalšie výpočty, čo
značne skracuje čas potrebný na vykreslenie obrázka.

Táto rozdielnosť ukazuje, že metóda MZV je vhodnejšia pre aplikácie, kde je pri-
oritou rýchlosť zobrazenia a je k dispozícii dostatočné množstvo pamäte. Metóda VPL
by mohla byť preferovaná v prostrediach, kde nie je možné uchovávať veľké množstvá
dát v pamäti.

4.2 Vizuálne ukážky

Pre vizualizáciu celého štvorrozmerného fraktálu nestačí zobraziť len jeho jednotlivé
rezy, ale je potrebné ich spojiť. Ako príklad si vezmime Juliinu množinu a postupne
navyšujme počet rezov vo štvrtej dimenzii (obrázky 4.1, 4.2, 4.3). Na obrázku 4.4 je
použitý volumetrické zobrazenie, ktoré na rozdiel od povrchového zobrazenia odhaľuje
aj vnútornú štruktúru fraktálu.
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Obr. 4.1: Juliina množina 1 povrchový rez.

Obr. 4.2: Juliina množina 3 povrchové rezy.
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Obr. 4.3: Juliina množina 50 povrchových rezov.

Obr. 4.4: Juliina množina 50 volumetrických rezov.



Záver

Hlavným cieľom tejto bakalárskej práce bolo zobraziť štvorrozmerné fraktály v troj-
rozmernom priestore, pričom štvrtú dimenziu fraktálu reprezentujeme pomocou farby.
Tento prístup nám umožnil vizuálne preskúmať a analyzovať komplexné štruktúry
týchto matematických objektov.

Na začiatku sme sa venovali teoretickým základom fraktálov a kvaternionov. Ná-
sledne sme preskúmali rôzne techniky vizualizácie a optimalizácie, pričom sme čerpali
inšpiráciu z existujúcich systémov.

Na základe tejto analýzy sme navrhli architektúru aplikácie, ktorú sme implemen-
tovali s využitím technológie OpenGL a shader programov.

V rámci implementácie sme sa sústredili na dve hlavné zobrazovacie techniky, výpo-
čet pozdĺž lúča a zobrazovanie voxelov pomocou algoritmu Fast Voxel Traversal Algo-
rithm. Obidve techniky sme optimalizovali pomocou algoritmu Ray-Box Intersection,
ktorý výrazne zrýchlil výpočty priesečníkov lúčov s obálkou scény. Pre zobrazovanie vo-
xelov sme museli najprv vykonať potrebné výpočty, preto sme implementovali compute
shader program.

Porovnaním jednotlivých metód sme zistili, že zobrazovanie voxelov je efektívnejšia
technika, ale vyžaduje si vysokú pamäťovú kapacitu. Do aplikácie sme integrovali ka-
meru, ktorá zabezpečuje pohyb v 3D priestore, a vytvorili sme používateľské rozhranie,
ktoré ponúka rozsiahle možnosti pre konfiguráciu scény.

Budúci vývoj by mohol zahŕňať implementáciu ďalších techník zobrazovania alebo
štruktúr, ktoré by znižovali pamäťové nároky, napríklad dátová štruktúra octree. Ďal-
šou budúcou implementáciou by mohlo byť rozšírenie používateľského rozhrania, ktoré
by umožnilo používateľovi priamo zadávať iteratívne funkcie fraktálov, ktoré by sa
zobrazovali.

Táto práca nielenže položila pevné základy pre ďalší vývoj v oblasti vizualizácie
viacrozmerných fraktálov, ale aj prispela k lepšiemu pochopeniu a skúmaniu týchto
fascinujúcich matematických objektov.
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Príloha A: obsah elektronickej prílohy

V elektronickej prílohe priloženej k práci sa nachádza zdrojový kód programu a súbory
s výsledkami experimentov.

Zdrojový kód je zverejnený aj na stránke
https://github.com/adrkoc/BachelorThesis.
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