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Abstrakt

Cieľom tejto práce je skúmať dôsledky kvantovej štruktúry priestoru a previazať ich s
pozorovateľnými parametrami. Jej cieľom je vypočítať prahovú anomáliu pre GRB s
realistickou formuláciou disperzného zákona a overiť presnosť rôznych aproximácií to-
hto vzťahu. Práca sa zameriava na disperzný vzťah, ktorý vzniká zavedením nekomu-
tatívnej štruktúry na kvantovom priestore. Tento vzťah je porovnávaný s disperznými
vzťahmi z rôznych teórií a poukazuje na potenciálny dolný limit pre škálovací param-
eter.

Kľúčové slová: GRB221009A, vákuový rozptyl, kvantový priestor
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Abstract

The thesis aims to investigate the consequences of the quantum space structure and
establish their connection to observable parameters. Its objective is to calculate the
threshold anomaly for GRB using a realistic formulation of the dispersion law and to
verify the accuracy of various approximations of that formulation. The thesis focuses on
a dispersion relation resulting from the introduction of a noncommutative structure on
the quantum space. This relation is compared with dispersion relations from different
theories and a potential lower limit on the scaling parameter is suggested.

Keywords: GRB221009A, vacuum dispersion, quantum space
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Preface

The discovery of a photon with an energy level of approximately 18 TeV on 09.10.2022
posed a challenge to the principles of special relativity. While explanations such as
those offered by string theories and doubly special relativity exist for this phenomenon,
this work explores the potential of noncommutative quantum space (NCQS) theory as
a solution to this problem of quantum gravity. We demonstrate the ability to remodel
the dispersion relation to match other theories and examine the lower bound of the
scaling parameter in NCQS. This thesis explores the possibilities of NCQS as a potential
solution to this quantum gravity problem.

vii



viii



Contents

Foreword 1

1 Noncommutative quantum space 3
1.1 Planck units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Minimal length scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 High energy photon . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 The Heisenberg microscope . . . . . . . . . . . . . . . . . . . . 5

1.3 Noncommutative quantum space . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 The Legendre transformation . . . . . . . . . . . . . . . . . . . 7

2 Dispersion relation 9
2.1 Photon annihilation process . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Lorentz invariance violation . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results of the work 15
3.1 Dispersion relation in different theories . . . . . . . . . . . . . . . . . . 15

3.1.1 Relativistic dispersion relation in NCQS . . . . . . . . . . . . . 15
3.1.2 Amelino-Camelia DSR . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Higher-order terms in dispersion relation . . . . . . . . . . . . . . . . . 17
3.3 Lower-bound of the scaling parameter . . . . . . . . . . . . . . . . . . . 20

Conclusion 23

ix



x



List of Figures

2.1 The diagram of photon annihilation into an electron-positron pair. . . . 10
2.2 Graphical representation of the ξ(k). . . . . . . . . . . . . . . . . . . . 12

3.1 Comparison of disperse relations. . . . . . . . . . . . . . . . . . . . . . 18
3.2 Comparison of signs in terms with k4. . . . . . . . . . . . . . . . . . . . 20
3.3 Solution for ξ if ε = 1 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



xii



List of Tables

3.1 Table of solution ξ for particular values of k. . . . . . . . . . . . . . . . 19
3.2 Table of differences in results ξ for specific values of k. . . . . . . . . . 19

xiii



xiv



Foreword

In the 17th century, Isaac Newton introduced the law of universal gravitation in his
work “Philosophiæ Naturalis Principia Mathematica”, which was derived from empirical
observations. As time went on, anomalies in the world of physics appeared, challeng-
ing scientists to find solutions. It wasn’t until the 20th century, when Albert Einstein
presented his theory of relativity, that many of these problems were solved, providing
physicists with precise predictions for large-scale phenomena like planets, stars, and
black holes. In 1864, Maxwell’s equations completed the theory of classical electro-
magnetism, explaining the relationship between electric fields, magnetic fields, electric
current, and electric charge. Despite its enormous success, classical electromagnetism
couldn’t account for discrete lines in atomic spectra or the distribution of blackbody
radiation across different wavelengths. Max Planck later solved this problem by intro-
ducing the idea that only discrete energy values can be exchanged between subatomic
particles, naming this “pack” of the energy “quantum”. In the same century, quantum
field theory emerged from the work of generations of theoretical physicists. The weak
and electromagnetic forces have been successfully united in electroweak theory, while
the strong force is described by a different quantum field theory called quantum chro-
modynamics. Scientists have come very close to discovering the theory of everything,
with only the need to quantise gravity remaining. However, despite considerable effort,
it remains a significant challenge.

Over the past decade, various approaches have been put forward that enable us
to investigate certain characteristic phenomena of quantum gravity instead of directly
testing the fundamental theory itself [3]. This is the first time we can conduct ex-
periments where quantum mechanics and gravity may coexist, despite our inability to
merge them at a theoretical level.

One of the approaches centres around the Brownian motion theory. It posits that
quantum spacetime might be discrete on the Planck scale, analogous to how matter
becomes discrete when observed at the atomic scale. Consequently, the effects of
this discreteness could manifest as random fluctuations in the propagation of light or
elementary particles, much like in Brownian motion. These effects could register as
noise in interferometers that are highly sensitive to measure gravitational radiation.
However, presently, there are no indications of noise in the detectors that cannot be
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2 Foreword

explained by ordinary causes, suggesting the absence of such effects at this level.
An alternative method is based on the concept of large extra dimensions. In some

models, there is a possibility that quantum gravitational effects could be significantly
stronger than usual due to a change in the gravitational interaction on the smallest
scales. This change takes place in scenarios with large additional spatial dimensions,
whose existence is predicted by string theory. Consequently, quantum gravity could
potentially become detectable in Earth-based collider experiments such as the LHC.
If this prediction were accurate, we would anticipate the detection of gravitons and
black holes at the LHC. However, no such findings were observed in LHC experiments,
unfortunately.

Last but not least, we come to the testing of the symmetry of spacetime, which
is a topic discussed in this thesis. One plausible hypothesis is that the principle of
relativity breaks down at the scale of Planck energy, resulting in a preferred state of
motion and rest. Researchers can search for evidence of this by looking for a variation
in the speed of light proportional to its energy. This effect can be detected by observing
light from astrophysical sources such as gamma-ray bursts (GRB) that have travelled
great distances. Although the effect is small, the arrival time of a photon can be offset
by a few seconds over billions of light years. The Fermi telescope, launched in June
2008, has detected several bursts where the higher energy photons arrive more than 10
seconds after the onset of the burst in the low energy range. The cause of the delay
in high energy photons is still uncertain, whether it’s due to emission or propagation.
However, there is good news the HERMES (High Energy Rapid Modular Ensemble of
Satellite) experiment is in preparation. This experiment is expected to have enough
sensitivity to distinguish between emission and propagation [1].

In this thesis, we are also discussing some violations of the Lorentz invariance, but
rather than variation in the speed of light, we focus on the energy thresholds of the
photons from GRB that can be observed.



Chapter 1

Introduction to noncommutative
quantum space

The primary objective of this chapter is to offer the reader an overview of noncommu-
tative quantum space. The main feature of the noncommutative space is its fuzziness
when observed at a microscopic level, making it impossible to distinguish between two
closely spaced points in space.

1.1 Planck units

Special relativity and quantum mechanics both rely on fundamental constants – the
speed of light c for special relativity and the reduced Planck constant ℏ for quantum
mechanics. However, using only these two constants, it is impossible to construct units
of length or mass. Fortunately, in 1899, Max Planck proposed a solution by adding
Newton’s gravitational constant κ, which allowed the construction of constants with
dimensions of mass, length and time. These constants are known as Planck mass,
Planck length, and Planck time and are respectively defined as

mplanck =

√
ℏc
κ

≈ 2 · 10−8kg,

lplanck =

√
ℏκ
c3

≈ 10−35m,

tplanck =

√
ℏκ
c5

≈ 5 · 10−44s.

(1.1)

These constants are particularly significant as they serve as markers for the scale at
which the quantum effects of gravitational interaction are predicted to become relevant,
as we will explore later.

3



4 CHAPTER 1. NONCOMMUTATIVE QUANTUM SPACE

1.2 Minimal length scale

This section aims to explore the minimal length scale that can be observed in certain
thought experiments. As we will see, this will be crucial for defining noncommutative
space. We encourage a curious reader to see also [2] for more details about this section.

1.2.1 High energy photon

Let us consider this thought experiment: Suppose we wish to distinguish between two
points in space that are separated by a distance of d. To achieve this, we require
a photon with a wavelength λγ ≈ d. However, what would happen if we gradually
decreased the distance d? We know that the energy of a photon is determined by

Eγ =
hc

λγ

, (1.2)

where c is the speed of light and h is the Planck constant. By referring to 1.2, it be-
comes evident that decreasing the distance d between the two points and consequently
decreasing the wavelength λγ of the photon results in an increase in the energy of the
photon Eγ.

As per general relativity, we understand that a high energy density can curve space-
time to the extent that it may lead to the formation of a black hole, whose Schwarzschild
radius is given by

Rs =
2κE

c4
, (1.3)

where κ is the gravitational constant and E is the total energy. The Schwarzschild
radius is a parameter in the Schwarzschild solution of the Einstein field equations,
and it defines the event horizon of Schwarzschild black holes. These black holes are
characterised as static and non-rotating, existing in a vacuum. The event horizon can
be defined as a boundary beyond which any events that occur will not have an impact
on an observer.

Now, if we substitute energy from 1.2 to 1.3 we get

Rs =
2κh

λγc3
. (1.4)

It is known that we can form a wave packet that is localised within a volume propor-
tional to λ3

γ using photons with a wavelength of λ′
γ ≥ λγ. According to Equation 1.4,

reducing the wavelength will increase the Schwarzschild radius. Consequently, there
exists a critical value of λγcrit at which the Schwarzschild radius will be equal to the
wavelength of the photon. This implies that the photon will be concealed under the
event horizon and will form a black hole. This implies that there is a certain distance
limit beyond which it becomes impossible to distinguish between two points. Sur-
prisingly, this phenomenon happens approximately for λγcrit ≈ lplanck, where lplanck is
Planck length.
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1.2.2 The Heisenberg microscope with Newtonian gravity

Werner Heisenberg’s thought experiment, the Heisenberg microscope, has been instru-
mental in shaping certain concepts in quantum mechanics. Specifically, the Heisenberg
microscope uses classical optics to demonstrate the uncertainty principle.

Consider the scattering of a photon with frequency ω moving along the x direction
with a particle whose position on the x axis we intend to measure. Let the cone of
light rays emanating from the microscope lens and converging on the particle, form an
angle ϵ with it. As per classical optics, the wavelength of the photon sets a limit to
the possible resolution ∆x

∆x ≳
λγ

sin ϵ
=

1

2πω sin ϵ
. (1.5)

It is worth noting that we will henceforth utilise units where ℏ = c = 1.
When a photon is used to measure the position of a particle, it transfers momentum

to the particle, causing uncertainty in the momentum along the x-direction ∆px, as the
direction of the photon after Compton recoil cannot be determined more accurately
than ϵ. The uncertainty is given by

∆px ≳
2π sin ϵ

λγ

= ω sin ϵ. (1.6)

The first-order form of Heisenberg’s uncertainty principle can be obtained by combining
equations 1.5 and 1.6

∆x∆px ≳
1

2π
. (1.7)

As we know from Heisenberg’s uncertainty principle, it is meaningless to even con-
sider the position and momentum of the particle at the same time. Consequently,
instead of speaking about the photon scattering on a particle at one point, we should
speak of a photon interacting strongly with a particle in some region of size R.

Incorporating gravity into this thought experiment, we need to consider the time
interval τ between the interaction and measurement, which should be at least the
order of the distance R travelled by the photon for the interaction to occur. This
implies τ ≳ R. If we look at 1.1, we see that for units where ℏ = c = 1, we have
the same dimension for time and distance. As the photon carries energy, it exerts a
small gravitational pull on the particle being measured, resulting in a gravitational
acceleration of at least

a ≈ κω

R2
. (1.8)

Let us assume that the particle is moving at non-relativistic speeds. The acceleration of
the particle due to the gravitational force of the photon lasts for a duration of time that
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the photon spends in the region of strong interaction. During this time, the particle
acquires a velocity of

v ≈ aR =
κω

R
. (1.9)

Therefore, in time R, the acquired velocity enables the particle to cover a distance of

L ≈ vR = κω. (1.10)

Due to the unknown direction of the photon within an angle of ϵ, the direction of the
acceleration and the resulting velocity of the particle becomes uncertain as well. As a
result, the projection of the particle’s position onto the x-axis also has an uncertainty
of

∆x ≳ κω sin ϵ. (1.11)

If we combine 1.5 and 1.12 we get

∆x ≳
√
κ = lplanck. (1.12)

Once more, we have derived the Planck length as the uncertainty in position.

1.3 Noncommutative quantum space

Let us say we have a commutator in basic quantum mechanics. If the commutator is
not a 0, the Heisenberg uncertainty principle applies. It says that the more accurately
we measure one element of the commutator, the less accurately we measure the second
element of the commutator. One of the most famous commutators in physics is a
momentum-position commutator [x̂, p̂x] = iℏ.

Usually, the space that we consider is commutative, which means [x̂i, x̂j] = 0, where
x̂i is a position operator. This space is certainly not fuzzy because the commutator is
equal 0. From now on, let us denote noncommutative quantities with capital letters.
How can we construct a noncommutative space if we want it to be fuzzy? We can
simply define it as

[
X̂ i, X̂j

]
= 2iλϵijkX̂k, (1.13)

where λ is a constant of noncommutativity, i is an imaginary unit and ϵijk is the
Levi-Civita symbol. If we have a closer look at the constant of noncommutativity λ,
we can assume that it will be somehow related to Planck length. We see that it has a
dimension of length and if we take λ → 0 we will have a commutative case. There is one
more beautiful property that we have inserted. This relation is rotationally invariant.
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Because it is a non-zero commutator, a Heisenberg uncertainty principle applies to it,
which means that if we, for example, want to measure position in x more precisely, we
measure position in y less precisely. This means that we can never measure both x and
y at the same time, which means, that it is fuzzy.

One of the significant results of noncommutative space, after considerable effort, is
the dispersion relation that emerges from it. The dispersion relation is given by

1

2
V̂ 2 = Ĥ

(
1− λ2

2
Ĥ

)
, (1.14)

where Ĥ is a Hamiltonian and V̂ is a velocity operator. Not surprisingly, if we send λ →
0, we get the kinetic energy (without mass). If the reader is interested in understanding
the origin of this relation, they may refer to [5]. The equation 1.14 reveals a relationship
between energy and velocity. However, as explained in Chapter 2, it is preferable to
express the dispersion relation in terms of momentum rather than velocity. To do so,
we need to do a Legendre transformation.

1.3.1 The Legendre transformation of dispersion relation

First, we will go from operators of physical quantities to the corresponding physical
quantities. To do so, we will take eigenvalues of the operators and will stop writing
hat on physical quantities (Â → A). After doing so, the equation 1.14 will take form

1

2
V 2 = H

(
1− λ2

2
H

)
= H (1− aH) . (1.15)

As the next step, we will express the equation in the form of H(V )

H2 − 1

a
H +

V 2

2a
= 0 =⇒ H(V ) =

1

2a
± 1

2a

√
1− 2aV 2. (1.16)

Now we will express p(V ) and V (p)

p(V ) =
∂H

∂V
= ∓ V√

1− 2aV 2
=⇒ V (p) = ± p√

1 + 2ap2
. (1.17)

Now, let us make the Legendre transformation

H̃(p) = pV −H(V ) = ± p2√
1 + 2ap2

− 1

2a
∓ 1

2a

√
1− 2aV 2. (1.18)

We have some flexibility in choosing the signs, so we will select the ones that result in
an equation resembling our initial equation 1.15. With additional simplification and
substitution (H̃ → H), we obtain

1

2
p2 = H (1 + aH) = H

(
1 +

λ2

2
H

)
. (1.19)
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If we once again send λ → 0, we obtain

1

2
p2 = H, (1.20)

which is the classical relation between energy and momentum (without mass).



Chapter 2

Dispersion relation

The focus of this chapter is on the dispersion relation, energy thresholds, and properties
of Lorentz invariance violation (LIV), as they are closely interconnected, as shown by
[7]. The dispersion relation that we get from special relativity for particles with mass
is

E2(p) = p2 +m2, (2.1)

where m is the mass of the particle. For massless particles (in this thesis, we will only
work with photons), it is

ω2(k) = k2, (2.2)

where ω is the angular frequency and k is the wave number.

2.1 Photon annihilation process γγ → e+e−

In special relativity, the production of an electron-positron pair through the annihila-
tion of two photons is possible only above a certain lower threshold. This threshold
refers to the minimum energy of the second photon (in case the energy of one photon is
fixed) required to initiate the process. Ultra-high energy (UHE) photons are unable to
travel long distances through space due to attenuation caused by cosmic background
light, such as the cosmic microwave background (CMB) and extragalactic background
light (EBL).

Let us examine the process of photon annihilation, as depicted in 2.1. The an-
gles between the incoming photons and the outgoing electron/positron are α and β,
respectively. Luckily, since we are only interested in thresholds, we can choose the
photon with 4-momentum p2 as the fixed one and assume that its energy ε, as well as
its momentum magnitude |p⃗2|, are much smaller than those of the other photon with
4-momentum p1.

9



10 CHAPTER 2. DISPERSION RELATION

Figure 2.1: The diagram of photon annihilation into an electron-positron pair.

From special relativity, the lower threshold of the annihilation process occurs when
α = π and β = 0 and electron/positron carries half of the energy and momentum. It
is good to say that the upper threshold does not exist. Since we already know the
configuration, it is easy to calculate the threshold

p1 =(E, 0, 0, E) ,

p2 =(ε, 0, 0,−ε) ,

p3 = p4 =

(
E + ε

2
, 0, 0,

E − ε

2

)
.

(2.3)

We know that

m2 ≡ p23 =

(
E + ε

2

)2

−
(
E − ε

2

)2

, (2.4)

where m is the mass of electron/positron, and we use the metric tensor (+,−,−,−).
From 2.4, we obtain the lower threshold condition for photon annihilation

E ≥ Eth =
m2

ε
. (2.5)

If the energy of a photon exceeds Eth, photon attenuation by low-energy photons will
occur.

The average energy of a CMB photon is approximately 6.35× 10−4 eV, which gives
rise to a threshold energy of Eth = 411 TeV. Therefore, the CMB is not a viable source
for our purposes. It is worth noting that the highest energy photon ever observed was
emitted by GRB221009A and had an energy of around 18 TeV. Conversely, the EBL
photons will play a critical role in all the effects that we will discuss in the next chapter.
The energy of EBL photons that cannot be ignored lies in the range of 10−3 eV to 1 eV,
which implies a threshold energy in the range of 261 GeV to 261 TeV. We can find a
better analysis of EBL photons in [6].
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2.2 Lorentz invariance violation (LIV)

Symmetries are crucial in physics, and among them, Lorentz symmetry and Lorentz in-
variance hold a significant position. In modern physics, Lorentz invariance is considered
a fundamental building block. It has been verified by nearly all experiments with high
accuracy. Nevertheless, some quantum gravity theories, like certain string theories,
loop quantum gravity, and doubly special relativity, predict certain LIV properties.
These properties result in the modified dispersion relation, which can be described,
regardless of the specific theory, by a model-independent form

E2(p) = p2 +m2 − ηpn, (2.6)

where m denotes the mass of the particle, p represents the magnitude of the momentum
vector p⃗, η is a parameter dependent on the particle species, and n takes values of 3,
4, and so on (although we will mainly anticipate that n = 3). The value of parameter
η is greatly suppressed and can be positive, negative, or zero. It is expected to be
suppressed by the Planck scale.

Modified dispersion relation 2.6 for massless particles will be

ω2(k) = k2 − ξkn, (2.7)

where ω is the angular frequency, k is the wave number, and ξ is the LIV parameter.
Once again, we consider the same configuration as in 2.1 under special relativity.

The primary characteristic of the modified dispersion relation is that it can increase
or decrease the threshold, and in certain cases, it can give rise to a region where both
upper and lower thresholds coexist. We need to modify the expression for p1 introduced
in the special relativity case to p1 = (ω(k), 0, 0, k), where ω(k) is defined in equation
2.7. We leave p2 unchanged. This modification is possible because ε is so small that
the contribution from LIV can be considered negligible. After same process as in 2.3
and 2.4 we get

m2 =

(
ω + ε

2

)2

−
(
k − ε

2

)2

=
ω2 − k2 + 2ϵ (ω + k)

4

=
4εk − ξkn−1 (ε− k)

4
+O(ξ2)

=
4εk − ξkn

4
+O(ξ2) +O(ξε).

(2.8)

Once again, we assumed that ε is tiny. After we solve 2.8 for ξ we get

ξ =
4εk − 4m2

kn
, (2.9)
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where we assumed that k > 0. In the following discussion, we will focus on the
simplified case where n = 3 in the equation 2.9. This case has been well studied in
phenomenological studies and allows us to easily investigate the threshold behaviour
by analysing the properties of 2.9. The properties of 2.9 are as follows:

• There exists only one zero point at k0 =
m2

ε
, which coincides with Eth from 2.5.

• A global maximum occurs at the critical point kc = 3m2

2ε
with corresponding

ξc =
16ε3

27m4 .

• As k → 0+, ξ approaches negative infinity, whereas as k → ∞, ξ approaches zero.

I

II

III

Figure 2.2: Graphical representation of the ξ(k). We can divide it into three regions.
In I, we can see all photons; in II, there is an interval of photons that we do not see;
and in III, there is a lower threshold after which we can not see any photon.

These properties can be observed in Figure 2.2. The parameter space of 2.9 can be
divided into three regions based on these properties.

Region I corresponds to the interval ξ > ξc. If our LIV parameter falls within
this region, no annihilation with low-energy photons will occur, and we will be able to
detect all photons.

Region II corresponds to the interval 0 < ξ < ξc. In this region, we obtain two dis-
tinct solutions for 2.9, denoted as k< and k>, with k< representing the lower threshold
and k> representing the upper threshold. If the photon’s wave number falls into the
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interval k< < k < k>, then annihilation will occur, and we will not be able to observe
photons with energy corresponding to k.

Region III corresponds to the interval ξ < 0. In this region, we obtain only one
solution corresponding to the lower threshold.

It should be noted that the annihilation process is a probabilistic phenomenon that
depends on the distance travelled. For instance, if we had a high-energy photon source
up close, we would be able to observe some photons. However, since all the sources of
high-energy photons we have are located far away, some photons in between thresholds
are so improbable that they cannot be detected [6].
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Chapter 3

Results of the work

In the upcoming chapter of this thesis, we will present the findings of our work. We
will investigate the dispersion relation to higher orders and evaluate its significance.
Additionally, we will closely examine the potential values of the scaling parameter. Our
primary reference for numerical values will be the gamma-ray burst (GRB) detected
on 9 October 2022, commonly referred to as GRB221009A. The Large High Altitude
Air Shower Observatory (LHAASO) recorded several photons from this burst with an
energy of approximately 18 TeV. For numerical computations, we used WOLFRAM
MATHEMATICA 13.2.

3.1 Dispersion relation in different theories

As mentioned in the previous chapter, several theories lead to a dispersion relation

ω2(k) = k2 − ξk3. (3.1)

This relation is just the first order of ξ. It is only natural that the whole relation will
be

ω2(k) = k2 − a1ξ
1k3 − a2ξ

2k4 − a3ξ
3k5 − ... = k2 −

∞∑
1

aiξ
iki+2, (3.2)

where ai is a dimensionless factor and ξ is our scaling parameter that should be closely
related to Planck length.

To assess the level of negligibility of the higher-order terms, we must examine the
values of the constants ai in those terms for various theories.

3.1.1 Relativistic dispersion relation in noncommutative quan-

tum space

We know that 1.15 was constructed without adding any relativistic effect. How can
one construct something relativistic out of non-relativistic physics?

15
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The answer is elementary, my dear Watson. We want our new relativistic dispersion
relation to satisfy two conditions. Firstly, we need to have an equation in which after
we send λ → 0, we get a relativistic formula for momentum

E = pc = p. (3.3)

Secondly, we can require our constructed space to influence slow particles the same as
fast particles. The way to meet all of our assumptions is very simple. We can make
substitution in 1.19 where p2

2
→ p and λ2 → ξ, after which we get

p = H

(
1 +

ξ

2
H

)
. (3.4)

The structure of the equations is left untouched, so our constructed space influences
slow particles in the same way as fast particles, and if we send λ → 0, we get relativistic
formula 3.3.

Now let us take 1.19, solve it for H, square it and for better visualisation of what
we have done, let us make Taylor series of it

H2 =

(√
p2λ2 + 1− 1

)2

λ2
=

p4

4
− p6λ2

8
+

5p8λ4

64
− 7p10λ6

128
+O

(
λ8
)
. (3.5)

After our substitution, we get

H2 =
p4

4
− p6λ2

8
+

5p8λ4

64
+O

(
λ6
)
→ H2 = p2 − p3ξ − 5

4
p4ξ2 +O(ξ3). (3.6)

It is remarkable that we obtained this relation without any intentional effort but rather
through making reasonable assumptions. Furthermore, we can observe that a2 is not
an excessively large number but rather a constant of the order of one.

3.1.2 Amelino-Camelia Doubly Special Relativity

As we have observed, the Planck length lplanck holds a crucial significance in quan-
tum gravity theories, acting as a threshold for quantum effects. Hence, it is expected
that lplanck remains invariant in all inertial frames of reference. However, this poses a
challenge as it contradicts the length contraction predicted by Special Relativity. To
address this conflict, Amelino-Camelia Doubly Special Relativity proposes a solution
by modifying Einstein’s Special Relativity postulates as

1. The laws of physics involve a fundamental velocity scale c and fundamental length
scale lplanck.
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2. Each inertial observer can establish the value of lplanck (same value for all inertial
observers) by determining the dispersion relation for photons, which takes the
form E2− c2p2+ f(E, p, lplanck) = 0, where f is the same for all inertial observers
and in particular all inertial observers agree on the leading dependence of f :
f(E, p, lplanck) ≃ Ecp2lplanck.

For more information about this theory, we encourage the reader to check [4]. Let us
have a closer look at the dispersion relation in the second postulate. By using ℏ = c = 1

units and substituting lplanck = ξ, we can rewrite it to

ω2 + ξk2ω − k2 = 0 =⇒ ω2 =
−k2ξ + k

√
4 + k2ξ2

4
. (3.7)

After the Taylor series, we get

ω2 = k2 − k3ξ +
k4ξ2

2
+O(x3). (3.8)

Once again, we see that a2 is not an enormous number but rather a reasonably large
constant.

3.2 Higher-order terms in dispersion relation

From leading-order correction, we get graph 2.2. It is apparent that even with differ-
ent theories, the relations produced are quite similar, and they only differ in higher
corrections. Hence, it is useful to investigate the significance of higher-order terms.

As we have already seen in the previous section, constants in higher-order terms
are not big, so let us have a closer look at the behaviour and relevance of these terms.
For simplicity, let us look at

ω2(k) = k2 − a1ξ
1k3 − a2ξ

2k4. (3.9)

Having obtained the new dispersion relation 3.9, we will proceed in the same manner
as we did for 2.8. After some simplification, we arrive at

m2 =
4εk − εa1k

2ξ − a1k
3ξ − k4a2ξ

2

4
+O(ξ3) +O(εξ2). (3.10)

We want to know how negligible the higher order is, so we will substitute for our
parameters. For m, we use the mass of the electron, and for the energy of the low
energy photon, we substitute ε = 0.1 eV.
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Figure 3.1: Comparison of different disperse relations. We can see, that terms with k3

are the significant ones, while terms with k4 are relevant only for huge a2.

Firstly, it is important to consider the units we are using. If we were to use electron-
volts as the unit for k, the resulting value would be huge, on the order of TeV, while
our scaling parameter ξ would be tiny, on the order of 10−26eV −1. Through a trial and
error process, we have determined that the most suitable units to use for our photon,
with energy ε = 0.1 eV, are Eplanck

10000
≡ αp, where Eplanck is defined as Eplanck =

√
ℏc5
κ

, in
order to ensure that all values are of a reasonable order of magnitude.

The information provided by Figure 3.1 regarding dispersion relations is extensive.
The orange and magenta lines are particularly noteworthy. By observing these lines,
we can see that even a slight alteration of the constant a1, which appears with k3 in
3.9, results in a significant difference in the height of the graph. This is an intriguing
observation since it implies that we could easily differentiate between two theories that
vary in this term. As a result, it would be simpler for us to verify them experimentally.

Next, let us examine the orange, blue, and green lines closely in Figure 3.1. Upon
inspection, we notice that the orange and blue lines overlap almost entirely. The
distinction between them only becomes noticeable when the value of a2 reaches the
order of 1012, which is an enormous value. To facilitate better visualisation, it would
be more effective to display some values in a table. Before that, we will mark the
solution of the orange dispersion relation as ξ1, the solution of the blue dispersion
relation as ξ2 and the solution of the green dispersion relation as ξ3.

The actual values in Table 3.1 themselves are not as significant as their order.
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Table 3.1: Table of solution ξ for particular values of k.

k/ (10−8αp) ξ1/
(
10−7α−1

p

)
ξ2/

(
10−7α−1

p

)
ξ3/

(
10−7α−1

p

)
4 4.76240775064666 4.76240775064642 4.67498578238452
8 4.68567739935731 4.68567739935706 4.52208348686017
12 2.60031224589149 2.60031224589138 2.52387302531643
16 1.60830378255128 1.60830378255123 1.56891964110724
20 1.08523562821995 1.08523562821992 1.06265108178746

Table 3.2: Table of differences in results ξ for specific values of k. We can confirm our
observation from Figure 3.1.

k/ (10−8αp) |ξ1 − ξ2| /
(
10−20α−1

p

)
|ξ1 − ξ3| /

(
10−9α−1

p

)
4 2.4 8.742197
8 2.5 16.35939
12 1.0 7.643922
16 0.5 3.938414
20 0.3 2.258455

In order to better observe the differences between the lines, we will subtract their
respective values. As shown in Table 3.2, the discrepancies between ξ1 and ξ2 are in
the range of 10−20. If we convert these values back to electronvolts, we get a negligible
value of approximately 10−39. However, the difference between ξ1 and ξ3 is only two
orders of magnitude lower, which makes it easy for us to distinguish between the two
lines. It should be noted that terms involving k5 and higher would be even smaller
than the difference between ξ1 and ξ2. Therefore, there is no need to analyse them in
detail.

The insignificance of higher-order terms has both positive and negative aspects. On
the positive side, we can simply use the first order of the dispersion relation without
much consideration. However, on the negative side, we lose the ability to differentiate
between two theories due to the unimportance of higher order terms.

Another notable observation is that the value of a2 in Equation 3.8 is negative,
while we have only been considering positive values of ai so far. It is important to
investigate the behaviour of the dispersion relation when a2 is negative.

It can be observed from Figure 3.2 that the sign of ai affects the height of the graph
of the dispersion relation. Negative values of ai result in an increase of magnitude,
while positive values lead to a decrease.
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Figure 3.2: Comparison of signs in terms with k4. We can see that positive a2 is
pushing magnitude lower, while negative a2 is pushing magnitude higher.

3.3 Lower-bound of the scaling parameter

In Chapter 2, we have discussed three regions of the solution for 2.9. We have learned
that if the energy of photons falls into the area under the graph, we will not be able
to see these photons because the annihilation process will occur. This fact gives us an
opportunity to find the lower bound of the scaling parameter.

Let us concentrate on the LHAASO 18 TeV photon. We know the energy of this
photon, so we can substitute it in 2.9

ξlb(ε) =
4

k2
LHAASO

ε− 4m2

k3
LHAASO

= aε− b. (3.11)

The energy ε of the EBL photon is the only free parameter for us. If we fix the energy
ε = ε0 we can say, that scaling parameter will be ξ(ε0) ≥ ξlb(ε0).

We know that relevant EBL photons have their energy in the range 10−3 eV−1 eV.
If we insert this values into 3.11, we get

ξlb ∈ (−1.274 · 10−8 α−1
p , 9.295 · 10−7 α−1

p ). (3.12)

Units αp have been defined in the previous section. To find a general lower bound, we
have to take the biggest number in the interval 3.12, after which we get

ξ ≥ 9.295 · 10−7 α−1
p , (3.13)
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which corresponds to energy ε = 1 eV. For better visualisation, we shall make
graphs of this solution.
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Figure 3.3: The graphs show the solution for ξ if ε = 1 eV. We can see that if ξ was
less than ξ in the interception, there would be a huge interval of photons that we would
not be able to see.

As we can see in the figure 3.3, using ξlb1 = 9.295 ·10−7 α−1
p as a lower-bound is very

optimistic because it excludes a big interval of photons. The most pessimistic lower
bound is

ξc(ε = 1 eV) = 6.640 · 10−4 α−1
p = ξlb2. (3.14)

For better visualisation, the value of the Planck length in α−1
p is, by definition

lplanck =
1

Eplanck

= 10−4 α−1
p . (3.15)

Surprisingly, our lower bounds are around the same order as Planck length. Although
we cannot simply take it as our ξ because it could be, for example, ten times the Planck
length or a hundred times the Planck length.

We have calculated two potential lower bounds for the scaling parameter: ξlb1 and
ξlb2. If the value of the scaling parameter falls between these two bounds, it would be
highly significant. This would mean that if we observe any interval of photons that did
not reach us, we could experimentally test the validity of the theory.
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Conclusion

It remains to conclude the results of our work. In this thesis, we have continued the
study of threshold anomaly for GRB.

We have analysed the dispersion relation given by NCQS and have applied the
Legendre transformation to transform it into the form of H = H(p). After the trans-
formation, we obtained a relation that resulted in the classical physics relation between
energy and momentum. We have made some clever assumptions to make it relativistic.
As a result, we have obtained a dispersion relation that agrees with other theories, such
as Doubly Special Relativity.

Through our comparison of artificially made dispersion relations, we have sought
to better understand the significance of higher-order terms, as many theories differ
in them. Our findings indicate that anything higher than the first-order is negligible,
which is a double-edged sword. The bright side is that we can simplify all equations
by using only the first order terms. On the other hand, this prevents us from experi-
mentally distinguishing between two theories.

In our research, we have examined the possible values for the scaling parameter
obtained from the observed measurements of GRB221009A. Through our analysis,
we have identified two distinct lower bounds for this parameter. While the higher
lower bound is not particularly noteworthy, as it is still possible to observe photons
with any energy, the second lower bound holds significant potential for experimental
measurements. Based on our theory, there will be an interval of photons that cannot
be detected, providing us with an excellent opportunity for further investigation and
experimentation.
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