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Abstrakt

Cieľom tejto práce je skúmať správanie mikroskopickej čiernej diery obahujúcej sin-
gularitu, ktorá je rozmazaná ako výsledok možnej kvantovej štruktúry časopriestoru.
Práca navrhuje niekoľko takých možných rozmazaných rozložení hmotnosti a následne
sa zameriava na rozbor tepelného (Hawkingovho) žiarenia mikroskopickej čiernej diery.
Poukazuje na kvalitatívne podobnosti Hawkingovho žiarenia bez ohľadu na detaily
rozmazanej singularity vnútri mikroskopickej čiernej diery.

Kľúčové slová: Čierne diery, gravitácia, singularita
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Abstract

The aim of this thesis is to investigate the behaviour of a microscopic black hole con-
taining a singularity that is blurred as a result of a possible quantum structure of
spacetime. The thesis suggests several such blurred distributions of mass and then
focuses on analysing the thermal (Hawking) radiation of a microscopic black hole. It
shows a qualitative similarity of the Hawking radiation regardless of the details of the
blurred singularity within a microscopic black hole.

Keywords: Black holes, gravity, singularity
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Foreword

Put very briefly, black holes are objects with a mass so high contained in a space so
small that not even the light (or anything moving at the speed of light) can escape
their gravitational pull.

Black holes are among the more active areas of research in theoretical physics.
There remains a lot of mystery surrounding these objects, as observing a black hole
is very complicated. A wide range of black holes are currently known to physics,
categorized by their mass. It seems, that even microscopic black holes could exist,
ones that have a mass so small that their radius would be approximately equal to the
Planck length. However, this could have serious consequences for the black hole if there
exists a quantum structure of the spacetime (a structure that becomes obvious only at
Planck lengths).

The assignment of this thesis prompted the author to attempt to better understand
black-hole physics in the context of the general theory of relativity and to explore the
behaviour of these black holes. It was predicted by Hawking that a black hole would
emit a thermal (black-body-like) radiation, and this radiation — the Hawking radiation
— could, in theory, be observed. In the thesis, we aim to explore the universality of
this radiation and the microscopic black holes in general. Numerical methods were
used in our work to provide a better idea of how the microscopic black hole radiates
and to explore its behaviour.

This thesis was chosen by the author after being inspired by this thesis’s supervisor’s
work in the area of microscopic black holes.

1
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Chapter 1

Introduction to black holes

Black holes are a topic enshrouded in mystery and widely popular with general public.
However, they are also a target of active research by physicists. With this thesis we
shall humbly try to follow in the steps of many, whom explore the uncharted territory
of black-hole physics.

This thesis is divided into three chapters — Introduction to black holes, Theoretical
motivation, and Results of the work. The first chapter will cover the basic knowledge
required for understanding the work. It will also allow the reader to get more acquainted
with the topic covered by this thesis — black holes. If the reader feels they have a good
understanding of the basics of black-hole physics, it is possible to skip this chapter and
continue with Chapter 2.

1.1 Gravitating objects

Let us start from the basics. In the 17th century, Newton formulated his laws of motion
as well as the law of universal gravitation. According to this law, every two objects with
masses (point masses) M1 and M2 respectively are drawn to each other by a certain
force with a magnitude given by

Fg = G
M1M2

r2
, (1.1)

where G
.
= 6.67 · 10−11 m3 kg−1 s−2 is the gravitational constant and r is the mutual

distance of those point masses. This force was named the force of gravity.
Let us now imagine two such massive objects at a certain distance, one trying to

get away from the other. To make things easier, we can imagine the planet Earth and
a spaceship that wishes to leave the planet’s surface and escape towards the infinity.
There exists a minimal velocity required to achieve such a feat — this velocity is called
the escape velocity. Its magnitude is given by various parameters of the situation. If
the planet has mass M and the initial distance of the spaceship from the center of the

3



4 CHAPTER 1. INTRODUCTION TO BLACK HOLES

planet (therefore the planet’s radius) is R, the escape velocity is given by

vesc =

√
2GM

R
, (1.2)

which can easily be derived from the conservation of energy. Note that the escape
velocity does not depend on the mass of the escaping object.

1.2 Speed of light

In the 17th century, Rømer observed Jupiter’s moon Io and observed that the speed of
light could not be infinite. A rough finite value was determined, and various measure-
ments were conducted over time to determine this value more accurately.

In the 19th century, Maxwell proposed his equations for the electromagnetic field.
Solving these equations leads to discovering, that any electromagnetic wave travels
through vacuum at a certain constant speed c

.
= 2, 99 · 108 m s−1. Surprisingly, this

speed was equal to the (by then far more accurately) measured speed of light, sup-
porting the theory that visible light is an electromagnetic wave. The speed of light is
currently defined as c = 299 792 458 m s−1 exactly as to define the unit metre for the
SI system.

Einstein’s special theory of relativity took this a step further, postulating that the
speed of light (in vacuum) is constant with respect to every inertial reference frame
and that it is the maximal velocity at which anything can travel through space.

1.3 What is a black hole?

We will now take a semi-classical approach to obtain some intuition on what a black
hole is. Let us note that the current view of black holes includes the general theory of
relativity.

Let us now imagine a sphere of radius R and mass M . Looking at (1.2), we can see
that the higher the mass and the smaller the radius, the greater the escape velocity
of such a sphere would be. Let us therefore imagine that we have such a sphere and
we will compress it to have a smaller radius, keeping the mass constant. As we keep
compressing, there must exist a certain limit for the radius when the escape velocity is
equal to the speed of light c. This radius is known as the Schwarzschild radius, denoted
RS, and can easily be derived from (1.2) as

RS =
2GM

c2
. (1.3)

It is a radius that a sphere containing a mass M would have to have in order to
have the escape velocity (from its surface) equal to the speed of light. Let us note
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that the mass can, in fact, be easily compressed into a smaller sphere. We then do
not speak of a true surface, but instead, it is the limit distance from which light can
escape. The points of space with such distance from the centre of the space are called
an event horizon. Points of space inside the event horizon are called a black hole. In
the classical (Newtonian) sense, it is a place that has greater escape velocity than the
speed of light, making it impossible for anything to escape from the black hole. As not
even light can escape from it, it was given the name "black hole" (in the the late 60’s
by J. A. Wheeler).

These objects need to have a very, very high density. To give the reader a better
idea of this density, let us provide an example. The planet Earth approximately has
a mass M⊕ .

= 5, 97 · 1024 kg and a radius R⊕ .
= 6, 38 · 106 m. Using (1.3), we obtain

that should we wish to create a black hole out of the whole planet Earth, we would
need to compress it to a radius of approximately 9 millimetres. For our Sun with the
mass M⊙ .

= 1, 99 · 1030 kg (the so-called solar mass) and radius R⊙ .
= 6, 96 · 108 m,

the Schwarzschild radius would be approximately 2953 metres.
We can therefore see that black holes are incredibly dense — either very small for

their mass or absurdly massive for their radius.

1.3.1 A singularity inside a black hole

As mentioned above, the view of black holes provided thus far is more classical or
semi-classical. Let us, at least very briefly, mention the main difference between the
classical view and the modern view.

In 1915, Einstein published the Einstein field equations, which describe the geom-
etry of curved spacetime in the presence of mass. This theory allowed an existence of
objects that would create regions from which nothing could escape. A few months later,
in 1916, Schwarzschild provided a spherically-symmetric solution (which we will men-
tion in Chapter 2 of this thesis) to these equations in vacuum. This solution, however,
had a slight (should we choose to call it that) flaw — it was continuous everywhere but
in the origin of spatial coordinates. The topic reopened in 1939 when Oppenheimer
and Snyder calculated the collapse of a sphere of pressure-less gas, showing that the
matter would compress to a single point, creating infinite density in the centre — a
singularity. The work on black holes was then continued by Wheeler in the late 60s.

To enable the reader to understand black holes better, we advise reading for example
[7].
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Chapter 2

Theoretical motivation

In the second chapter, we will provide a more detailed insight into the work. We will
also introduce the proposed matter densities (see below), which will be crucial for our
work.

Lecture notes by Sean M. Carroll [3] and the book by Marián Fecko [5] have helped
the author to understand the mathematics behind general relativity better — in these
sources, more details can be found.

2.1 Black holes and the Schwarzschild solution

The existence of black holes was predicted by the general theory of relativity, where
such objects would be a valid solution to the Einstein’s equations

Gµν = 8πTµν . (2.1)

These are 16 equations altogether, each equation is obtained by plugging one (t,r,ϑ,φ)
into the each of the indices on both side, yielding 16 combinations. The equations
contain two objects. On the left-hand side there is the Einstein tensor G, for which

Gµν = Rµν −
1

2
Rgµν , (2.2)

where Rµν is the Ricci tensor, R is the Ricci scalar and gµν is the metric tensor. The
left-hand side therefore defines the curvature of the spacetime. On the right-hand side,
there is the stress-energy-momentum tensor (its covariant version to be completely
exact) Tµν , which describes the density of and flux of energy and momentum in the
spacetime. Most importantly (in our context), the Ttt component is the matter density
distribution present in the spacetime.

Note that from equation (2.1) on, unless explicitly stated otherwise, throughout
this work we will be adjusting our units so that G = c = kB = 1 to simplify the results.

Arguably the most important such solution is the Schwarzschild solution of Einstein
field equations in a vacuum spacetime, which assumes spherical symmetry — this

7



8 CHAPTER 2. THEORETICAL MOTIVATION

results in a specific ansatz for the metric tensor. Using coordinates (t, r, θ, φ) and
choosing signature (−,+,+,+), the metric tensor would take the form of

g = diag(f(r),−1/f(r), r2, r2 sin θ) (2.3)

for some unknown function f(r). We shall use this ansatz for the metric tensor in our
work as well. Solving one of the Einstein field equations, for example

Gtt = 8πTtt, (2.4)

with such metric tensor would yield the unknown function f(r) if we knew the right
hand side. We arrive at the equation

1 + f(r) + rf ′(r)

r2
= 8πρ(r), (2.5)

where ρ(r) is the matter density of the black hole. The equation (2.5) is an ordinary
differential equation, that for a given matter density is solved by the integral form

f(r) = −1 +
2M

r

∫ r

0

ρ̃(r)4πr2dr, (2.6)

where ρn is a normalized matter density and M is the mass of the black hole, so that
ρ(r) = Mρ̃(r) and ∫ ∞

0

ρ̃(r)4πr2dr = 1. (2.7)

We can see that the unknown function f(r) can easily be obtained by plugging in a
chosen matter density ρ(r) and calculating the integral given by (4). Choosing to use
the Dirac delta-distribution as our ρ(r) — a singularity in the centre of our black hole
— we arrive at the Schwarzschild solution,

f(r) = −1 +
2M

r
. (2.8)

We can see from 2.1 that the event horizon is closer to the centre of the black hole
for smallest the mass (blue) and further away for the largest mass (violet).

For future needs, let us note that, in our signature, the black hole is a region where
the purely temporal component of the metric tensor, gtt (which is our function f(r)),
is positive. We find an event horizon at those points of spacetime where

f(r) = gtt(r) = 0. (2.9)

We can easily see from (2.9) that the Schwarzschild solution provides us with a
single event horizon at r = 2M .
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M=0,4
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Figure 2.1: Schwarzschild solution for various masses in Planck units.

2.2 Influence of a quantum structure

Theoretical physicists have worked with the concept of a spacetime that would have
some sort of a structure on a very small (quantum) scale — possibly the Planck scale
— for quite some time now. Details of such structure vary from theory to theory, but
what is shared by the theories is the absence of infinitely short distances.

This would, however, mean that the Dirac delta distribution is not a good candidate
for the matter density within a black hole — because the Dirac delta-distribution would
not be present in a spacetime where we cannot distinguish two points that are a certain
length λ apart. We would have to use some other matter density function, possibly
only very slightly different from the Dirac delta distribution — a so-called blurred
singularity. This concept has been explored by scientists in the past (see [2], [4], [8],
[9], [10], [11], [13]). One could argue that this effect is negligible for a black hole
that has a radius r ≫ λ. Let us, however, imagine a black hole that has a radius
comparable to this length scale, r ≈ λ — a so-called microscopic black hole. For such
an object, the change from a perfect singularity to a blurred one is shown to have
various interesting consequences, such as that there could be two event horizons (one
within the other) present, and there could even be more than two. As a part of this
work, we will investigate the qualitative influence of changing the blurred singularity
on the purely temporal component of the metric tensor.

Of course, any quantum structure should not have any significant impact on a black
hole with a radius r ≫ λ. Therefore, as the mass of the black hole increases, the differ-
ence between a perfect and blurred singularity should become less significant and we
should observe the (outermost) event horizon at a position given by the Schwarzschild
solution (2.8).
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2.3 Hawking radiation

It shows, that the black holes may not be so "black" after all. At first, we thought
that nothing could be coming our way from a black hole, but this turned out wrong.
Combining quantum field theory and curved spacetime it was shown by Hawking that
a black hole should indeed radiate [6].

Let us attempt to provide an intuitive view of how a black hole can radiate. First,
let us start with quantum fluctuations of spacetime. It is a phenomenon where a
pair particle-antiparticle is spontaneously created for a short time. The particle and
antiparticle each travel a short path and then annihilate. However, should such pair
emerge in close proximity to an event horizon of a black hole, there is a possibility that
half of the pair falls into the black hole (from whence it cannot escape) and the other
half escapes towards infinity.

The particle that escapes must carry some (positive) energy, which, due to energy
conservation, means that some energy is taken from the black hole — as if something
with negative energy would fall into the black hole. If we interpret this as a particle with
negative mass, the phenomenon can be viewed as if the black hole radiated a particle
with positive energy and mass, losing its own mass in the process. The particles leaving
the black hole can be interpreted as thermal radiation, known as Hawking radiation.
It is one of the possibly observable behaviours of a black hole.

Figure 2.2: Hawking radiation as a result of quantum fluctuations near the event
horizon.

Let us note that it has been shown [12], that the particle-antiparticle pair may
be created under the event horizon and one half of the pair may escape via quantum
tunneling.
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It has been shown [6], that the temperature of the Hawking radiation is proportional
to the surface gravity of the black hole κ. The surface gravity of the black hole is equal
to (see [6])

κ =
−g′tt(r0)

2
=

−f ′(r0)

2
, (2.10)

where r0 is the position of the event horizon — this would, of course, mean the outer-
most event horizon, should there be multiple event horizons (which we will show later).
Specifically, the Hawking temperature itself can be found as

T =
κ

2π
=

−f ′(r0)

4π
. (2.11)

This shows that, since choosing a specific blurred singularity as our matter density
fully defines the metric tensor (see (2.3) and (2.6)), the specifics on how the density
is blurred will affect the Hawking temperature, which is (at least theoretically) an
observable behaviour of the microscopic black hole.

2.4 Proposed matter densities

Recent research [2], [4], [9], [11] investigates the behaviour of both the purely temporal
component of the metric tensor and Hawking radiation of a microscopic black hole for
several classes (with a free parameter n) of matter densities given by

ρ̃1(r;n) = C1 · e−(r/λ)n

ρ̃2(r;n) = C2 · (1 + (r/λ))−n

ρ̃3(r;n) = C3 · (1 + (r/λ)n)−1

(2.12)

The shared property of these matter densities is that they rather rapidly tend to zero
and attain a maximum at zero, well modeling a blurred singularity. In this work we
shall propose two other matter densities. The chosen classes of matter densities are
given by

ρ̃4(r;n) = C4 ·
arctan (r/λ)n

(r/λ)n
(2.13)

ρ̃5(r;n) = C5 ·
arctan (r/λ)n

(r/λ)n−1
(2.14)

The density given by (2.14) does not share the maximum property and instead will
grow from zero towards a maximum and then rapidly tend to zero as well. We will
analyze the metric tensor and Hawking temperature for the proposed densities.
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Figure 2.3: Proposed classes of matter density for several values of the parameter n

each.

We observe that as the parameter n increases, the width of the "peak" in both
matter density classes decreases. Henceforth unless said otherwise, we shall set λ = 1,
as if making our r dimensionless, to simplify the results.

We can see that the proposed classes of matter density are quite different. However,
the Hawking temperature profile, as we shall show in the following chapter, proves to
be very similar despite the differences in matter density distributions.



Chapter 3

Results of the work

In the third chapter of this thesis, we shall present the analysis of results for the
proposed densities (2.13) and (2.14). We will obtain the solution f(r) for every matter
density and then observe the Hawking temperature profile. To aid us in those parts
of our work that need to be done numerically, we use Wolfram Mathematica 11.3

computational software.

3.1 Analyzing solutions

The very first step we need to take is calculating f(r) (as given by (2.6)) for our
proposed densities, which at first may simply seem to be an integral of a relatively
simple function. However, the results show to be a little more complicated. If we
denote fi = −1 + 2M

r
Ciϑi(r), we will find the integral parts of fi(r) as

ϑ4(r) =
4πr3

(
n− 3r−n arctan (rn)− n s2F1

(
1,− 3

2n
; 1− 3

2n
;−r2n

))
3 (n− 3)

, (3.1)

ϑ5(r) =
πr4

(
n− 4r−n arctan (rn)− n 2F1

(
1,− 2

n
; n−2

n
;−r2n

))
n− 4

(3.2)

where 2F1 is the Gaussian hypergeometric function (see [1]).
The integral parts of the solution do not converge for every n ∈ N. This is because

of that we require the existence of
∫∞
0

ρ̃i(r;n)4πr
2dr. This integral does only converge

for n > 3 or n > 4 if we use ρ̃4(r;n) or ρ̃5(r;n) respectively.
Figures 3.1a and 3.1b each show the fi(r) for the first five parameters n for which

the solution exists respectively. They show the qualitative similarities of the solutions,
both within one class and among each other. We can see that in every of these cases,
f(r) is a function complying to f(0) = −1 and we can see that for r → ∞, the solution
also tends to −1 — this is also obvious from (2.6, as our solution should in this limit
match Schwarzschild’s. Between r = 0 and r → ∞ the function always reaches a single

13



14 CHAPTER 3. RESULTS OF THE WORK

maximum, henceforth denoted r0. The position of this maximum is defined by the θi

part of the solution and is completely independent of the total mass M . Whether this
maximum is positive, zero or negative depends on the mass M that the microscopic
black hole possesses. There exists a certain critical mass (different for every solution),
henceforth denoted M0, for which the f(r0) = 0, making r0 an event horizon. If
M < M0, then there is no event horizon (and therefore no black hole), if M > M0, we
can see that there will always be two event horizons, one within the other, at positions
henceforth denoted rin and rout. Figures 3.1a and 3.1b were plotted with mass of 2M0

for every separate solution f(r).

n=5

n=6

n=7

n=8

n=9

2 4 6 8 10 r

-1.0

-0.5

0.5

1.0

f(r)

(a) f4(r) for n = 4, 5, 6, 7, 8

n=5

n=6

n=7

n=8

n=9

2 4 6 8 10 r

-1.0

-0.5

0.5

1.0

f(r)

(b) f5(r) for n = 5, 6, 7, 8, 9

Figure 3.1: Solutions f(r) for the proposed densities.

We observe that the peak of f(r) narrows as the parameter n increases for these
functions.

At this point, we would like to note that these functions, f4(r;n) and f5(r;n), were
generated by matter densities that share some common properties — they reach a single
maximum and rapidly tend to zero. Therefore, the aforementioned properties of the
solutions may be (and, as we later show, indeed are) a result of the shared properties
of the matter density classes.

3.2 Comparison to Schwarzschild solution

Before moving to explore the Hawking radiation of a microscopic black hole with the
proposed metric tensor, we will take a while to discuss whether our solutions did not
stray too far from the Schwarzschild solution. We would wish for our solutions to
provide an event horizon (the outer one) at the position given by the Schwarzschild
radius, or at least nearby.

To see how our solutions fare with respect to the Schwarzschild solution, we will
plot selected solutions for both classes of matter density.
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(a) f4(r; 4) (b) f5(r; 5)

(c) f4(r; 6) (d) f5(r; 7)

(e) f4(r; 8) (f) f5(r; 9)

Figure 3.2: Comparison to Schwarzschild solution.

In figures 3.2a-f we can see that as the parameter n increases, the solutions for both
classes of matter density start to match the Schwarzschild solution quite well. We can,
however, also see that for the lowest value of the parameter possible in each class, our
solutions do not match the Schwarzschild solution near the event horizon. Luckily, this
difference becomes negligible if we increase the mass of the black hole and therefore our
solutions will still resemble the Schwarzschild solution very well for a non-microscopic
black hole.
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3.3 Hawking temperature profiles for our matter den-

sities

The next step in our work is to analyse the Hawking radiation of a microscopic black
hole – meaning that we will analyse the Hawking temperature (given by (2.11)) of the
microscopic black hole with a proposed matter density with respect to its total mass
M .

Were we working with the possibility of a perfect singularity (and therefore the
Schwarzschild solution), the black hole could radiate particles and theoretically reach
an unlimitedly small radius (and mass). The Schwarzschild solution provides us with
a single event horizon given by the Schwarzschild radius rs = 2M . Substituting the
Schwarzschild solution (2.8) into (2.11) leads to

T (M) =
1

8πM
, (3.3)

we can therefore clearly see that as the black hole evaporates, its temperature grows
infinitely.

It has been shown (see [9]) that for a matter density given by (2.12), the Hawking
temperature does not grow infinitely as the mass decreases. Instead, it vanishes for a
certain mass. This property is shared by the solutions given by our proposed matter
densities. It is caused by the fact that as the microscopic black hole evaporates particles,
it reaches the critical mass M0 with a single event horizon situated at r0 and as f ′(r0)

vanishes, the Hawking temperature of a black hole with this critical mass vanishes as
well. We are left with what is called a microscopic black hole remnant.

2 4 6 8 10
r

-1.0

-0.8

-0.6

-0.4

-0.2

f(r)

Figure 3.3: Microscopic black hole remnant for f4(r; 4).
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Knowing this, we can easily obtain the temperature profile T (M) of a microscopic
black hole numerically. We know that T (M0) = 0 and we can keep adding small bits of
mass dM and see what the Hawking temperature given by (2.11). For that, of course,
we need to find the outer event horizon rout, which will be the greater solution to the
equation f(r) = 0. As we have hinted above, its position will depend on the mass
M . Then we calculate the derivative f ′(rout) in the event horizon to find the Hawking
temperature — this derivative does also depend on the mass M , as the mass dictates
the steepness of f(r). This way, we numerically obtain a set of points (M,T (M)) that
we can plot.
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(a) Temperature profiles given by f4(r;n) for
n = 4, 5, 6, 7, 8
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(b) Temperature profiles given by f4(r;n) for
n = 5, 6, 7, 8, 9

Figure 3.4: Temperature profiles given our solutions in Planck units.

Should we do so, we will notice that T (M) also reaches a single maximum. The
value of this maximum increases from the lowest value of parameter n (blue) to the
highest (violet) for both solution classes. We shall denote this maximum Tmax and the
mass when the microscopic black hole reaches this temperature we shall denote M1.
We can see that the qualitative description of the temperature profile is always the
same. The temperature steeply rises from zero (at M0) to a maximum (at M1) and
then tends slowly to zero again. For this reason, we may obtain the idea to re-scale
our plots so that the point (M1, Tmax) is the same point for every profile. We obtain
the following figures.
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Figure 3.5: Re-scaled temperature profiles given by f4(r;n) for n = 4, 5, 6, 7, 8.
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Figure 3.6: Re-scaled temperature profiles given by f5(r;n) for n = 5, 6, 7, 8, 9.

We can see that these figures are very, very similar and that the temperature profiles
for our solutions are nearly identical, despite the fact that the original matter densities
were quite different (see Figure 2.3). This may lead us to thinking that there is some
universality to this result. To further support this claim, we provide a comparison be-
tween our proposed densities and the matter density class ρ̃1(r;n) proposed by [9]. We



3.4. CASE OF MORE EVENT HORIZONS 19

can see that they all have the same qualitative description mentioned above, differing
only very slightly.
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Figure 3.7: Comparison of our temperature profiles with those given by ρ̃1(r;n).

However, all these temperature profiles were obtained from matter densities that
provide us with maximally two event horizons.

3.4 Case of more event horizons

In this section, we will analyze how the results of our work — especially the Hawking
radiation — change for a matter density that would allow the microscopic black hole
to have more than two event horizons. The goal is to investigate how the chosen
matter density ρ̃(r) impacts the solution f(r), which then defines the behaviour of the
microscopic black hole. As an example of such matter density, we can choose

ρ̃e(r) = Ce

((
1 + (r − 2)6

)−1
+
(
4 + (r − 6)8

)−1
)

(3.4)

The constant Ce is relatively small and fixed by normalisation. Therefore, to give the
reader a clearer idea of how this matter density looks, in the following figure we will
show it without the normalisation constant. We will as well show the solution f(r) for
this matter density. We will conveniently choose such total mass that the number of
event horizons is greater than two.
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(a) ρ̃e(r) without normalisation constant.
(b) Solution f(r) given by ρ̃e(r).

Figure 3.8: A matter density that yields four event horizons for a certain mass.

We can see that if we choose a normalised matter density that only shares the tend-
to-zero property, we may obtain a solution that has more than one local maximum and
therefore for a certain mass will have more than two event horizons — one outer and
several inner horizons. The surface gravity and the Hawking temperature, of course,
are calculated at the outer horizon.

The question we are left with is — what would the temperature profile look like for
such an odd solution that allows more than two event horizons? Locating the outermost
event horizon (also denoted rout) and finding the mass M0 such that f(rout) = 0,
repeating the whole procedure, we obtain the Hawking temperature profile for this
solution as well.
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Figure 3.9: Hawking temperature profile given by ρ̃e(r).
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To our surprise, we can see that this temperature profile is similar to the ones we
obtained before. This further supports the conjecture that the qualitative description
of the Hawking temperature profile is something more fundamental, something that
does not depend on the details of the matter density within the microscopic black hole.

3.5 Further steps

There is still a lot of unknown concerning the topic of microscopic black holes and
their behaviour that would require further research. In this section, we aim to provide
a reader with a few ideas of what could the next steps be and some questions that the
author was not able to answer yet.

3.5.1 Quantitative results

The work that we have done on the Hawking temperature profiles is done numerically
(see Appendix A for our algorithm for finding these profiles). Let us therefore provide
a reader with a table of numerical values. For each shown matter density, we will
provide the masses M0 and M1, the event horizon distance r0 for the critical mass, as
well as the maximal Hawking temperature Tmax. Let us remind the reader that we use
the Planck units defined in section 2.1 and that we still work with λ = 1 here.

Numerical values

r0 M0 M1 Tmax

ρ̃4(r; 4) 1.777 1.825 2.216(1) 0.015(1)
ρ̃4(r; 5) 1.509 1.156 1.416(1) 0.022(1)
ρ̃4(r; 6) 1.377 0.933 1.144(1) 0.029(1)
ρ̃4(r; 6) 1.298 0.823 1.003(1) 0.034(1)
ρ̃4(r; 8) 1.247 0.757 0.917(1) 0.038(1)

ρ̃5(r; 5) 1.871 1.894 2.294(1) 0.014(1)
ρ̃5(r; 6) 1.159 1.203 1.473(1) 0.022(1)
ρ̃5(r; 7) 1.442 0.970 1.190(1) 0.028(1)
ρ̃5(r; 8) 1.354 0.853 1.033(1) 0.033(1)
ρ̃5(r; 9) 1.295 0.783 0.943(1) 0.037(1)

Table 3.1: Numerical values for our proposed matter densities

Note that the uncertainties given in the table are caused by numerical searching for
the event horizon for the given mass (see Appendix A) using the square of left-hand
side method. The rest of the values are obtained with Wolfram Mathematica 11.3
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default AccuracyGoal which would allow precision up to 8 digits. These results are, of
course, rounded to the same precision as the other results.

We can see clearly from Table 3.1 that as the parameter n increases, the critical
mass M0 decreases, but the Hawking temperature increases.

The next step in this area would be to calculate the exact function defining the
temperature profile for any of the proposed matter densities. However, this task proves
to be quite difficult as with the increasing mass of the black hole, the position of the
outer event horizon increases, and the steepness of f(r) at the outer horizon also
increases. Combining these two factors proves complicated and therefore we have
chosen a numerical approach instead.

3.5.2 Observation of microscopic black holes

Our proposed matter densities lead to microscopic black holes that radiate (in peak)
at nearly Planck temperatures (10−2TP) and it is a radiation with very high energy
(10−2EP) As mentioned by [10], the radiation with the highest observed energy are
gamma-ray bursts, with energy approximately 10−9EP. Not even increasing the pa-
rameter n will aid in our case, because then the maximal temperature would only
increase! A possibility lays in increasing the length scale λ. According to [8], the max-
imal temperature scales with λ−1, therefore we would have to increase the length scale
by 7 orders to not go above the currently maximal energy of radiation measured.

Another option is to search for more matter densities, selecting one that would
naturally fit the observed gamma-ray bursts even at a Planck-length scale.

3.5.3 More than two event horizons

As we have suggested in section 3.4, there exist matter densities ρ̃(r) that will result in
a solution f(r) with more than two event horizons. This bids two interesting questions.

The first question is, how many event horizons can a black hole have in total? If we
use the Schwarzschild-like metric tensor (2.3), it is apparent that the maximal possible
number of event horizons (for any total mass of the black hole), in this subsection
denoted h must be defined by the matter density ρ̃(r) that resides within the black
hole. Our suggestion is that the value of h depends on the number of maxima that
ρ̃(r) has.

The assumption is that the necessary condition for a black hole to have more than
two event horizons is that the defining matter density itself has more than one maximum
— with this idea we created the matter density ρ̃e(r) mentioned in previous section. It
is however easy to show that this is not a sufficient condition — let us define another



matter density

ρ̃′e = C ′
e ·

(
1 +

(
(r − 3.4)6

)−1
+
(
4 + (r − 6)8

)−1
)

(3.5)

We can see that (3.4) and (3.5) differ only very slightly — in the position of the
first maximum. They both have two local maxima. The difference is however enough
so that solution for (3.5) has h = 2. It is not easily seen if we plot the solution itself,
however if we compute the r-derivative of the solution, we can more easily see there
is only one maximum for f(r). This implies there may only be two event horizons (as
the solution tends to −1 in both zero and infinity) for any mass. This, however, means
that two maxima in the matter density distribution do not imply the possibility of
more than two event horizons.

The second question is, how will the number of event horizons affect the Hawking
temperature profile? This is a crucial question, however a hard one to answer. As
we have mentioned above, we currently have no good quantitative way to describe the
Hawking temperature profile. We assume, however, that the Hawking temperature
profile will not depend on how many inner event horizons there are inside the outer
one. It is a bold assumption, but the Hawking temperature is defined only by the
steepness of the solution in the outer event horizon and this steepness is defined at
most by the last peek of the solution. If such assumption is true, then (speaking purely
theoretically) were we to detect radiation matching this temperature profile, we could
maybe speak of observing a microscopic black hole.
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Conclusion

It remains to conclude the results of our work. In this thesis, we have continued the
exploration of the behaviour of microscopic black holes. We have proposed two new
matter densities. The proposed matter densities differed in a single aspect (number
of minima), allowing us to explore the impact of this aspect on the behaviour of a
microscopic black hole.

We have analysed the solutions given by the Einstein field equations (using a
Schwarzschild-like metric) for our proposed matter densities, discovering a certain qual-
itative similarity — the solutions were functions with one maximum, allowing at most
two event horizons for the microscopic black hole. Assuming that this qualitative sim-
ilarity is caused by the number of maxima in the proposed matter density, we have
explored the impact of having more maxima present in the proposed matter density,
showing that this may but also may not lead (depending on how close these maxima
are) to the microscopic black hole being able to have more than two event horizons for
a certain total mass.

We have also compared the originally proposed matter densities to the widely known
Schwarzschild solution, showing that even for small masses, the results (position of the
outer/only event horizon, behaviour of the solution past the event horizon towards
infinity) match quite well. This means that the solutions for our proposed matter
densities do not significantly contradict the Schwarzschild view of a black hole.

Next, we have analysed the Hawking temperature profiles for the solutions obtained
from the proposed matter densities. Employing numerical methods, we have shown that
all the Hawking temperature profiles share a qualitative universality assumed by the
previous research in this area — the temperature steeply rises from zero for a certain
critical mass towards a single maximum and then more slowly drops again towards
zero. We have also explored whether this temperature profile’s qualitative description
does depend on how many inner event horizons there are within the outer one. For the
chosen solution with four event horizons, we have shown that the Hawking temperature
profile remains qualitatively similar.

Lastly, we have proposed more unanswered questions in this area. This may allow
any willing physicist to continue this work. The proposed questions focus on the
areas that we have not been able to explore satisfyingly due to, mostly, mathematical
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complexity. The questions are: how to obtain a quantitative description of the Hawking
temperature profiles and how many event horizons there may be present in total for a
microscopic black hole and their effect on its behaviour? We view it to be meaningful
to search for answers to these questions, as we believe that they are the key to better
understanding the nature, behaviour and significance of microscopic black holes.
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Appendix A: Numerical algorithm
used to plot Hawking temperature
profiles

In Appendix A, we will provide some more details on how to obtain the Hawking
temperature profile numerically. It will use the same notation as the thesis does until
here, with an index A to note it is just an example for this Appendix.

We start with a non-normalised matter density ρ̃(r) = ρ̃A(r)
CA

. Proposing the matter
density is usually done without normalisation, therefore we calculate the normalisation
constant CA using

CA =
1∫∞

0
4πr2ρ̃(r)

. (A.1)

We now hold a normalised matter density ρ̃A(r). We can calculate the solution
fA(r) using (2.6), choosing M = 1.

Having the solution with mass M = 1 ready, we numerically find the maxima of
this function. If we find multiple (which is not the case for our proposed densities),
we are concerned with the last one. This last maximum is the position r0 of the outer
horizon would the black hole have a critical mass M0.

The next step is calculating the critical mass M0, which can simply be done by
solving the equation

(fA(r) + 1) ·M0 − 1 = 0, (A.2)

for M0.
Now we are prepared to start obtaining the Hawking temperature profile. This will

be done by plotting a set of points (M,T (M)). We start from point (M0, 0). Choosing a
step dM we will add a small bit of mass to the black hole and calculate the temperature
step by step in a cycle. In the body of the cycle we execute the following:

• find the position of the event horizon r1,

– this is done by solving the equation (A.2) with the current mass instead of
M0, solving however for r instead. Should we encounter problems, we can
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instead look for a minimum of the function that is defined by the square of
the left hand side of (A.2) in a small range of radii.

• Calculate the Hawking temperature T (M),

– this is done using (2.11) with r1 instead of r0.

• Plot point (M,T (M)) for the current mass.

• Add another mass step and repeat.

Working in Wolfram Mathematica 11.3, if we use ListLinePlot to plot an Array

of (M,T (M)), we can easily sort this array by its second component which will yield
us the maximal temperature Tmax as well as the mass for which this temperature is
reached M1.
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