
Contents

1 Introduction (4) 3
1.1 Introduction: what it is all about? . . . . . . . . . . . . . . . . . 3

1.1.1 Energy, entropy and temperature . . . . . . . . . . . . . . 3
1.1.2 Liouville flow and ergodicity . . . . . . . . . . . . . . . . . 4
1.1.3 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Probability theory I . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Generating random numbers . . . . . . . . . . . . . . . . 6
1.2.2 Characteristic functions and cumulants . . . . . . . . . . 7
1.2.3 Central limit theorem . . . . . . . . . . . . . . . . . . . . 8

1.3 Probability theory II . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Basics of information theory . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Information content . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Optimal coding . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Conditional entropy . . . . . . . . . . . . . . . . . . . . . 13
1.4.4 Relative entropy . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.5 Quantum information . . . . . . . . . . . . . . . . . . . . 15

2 Thermodynamics (2) 16
2.1 Thermodynamic potentials, response functions and stability con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 The fundamental equation(s) of thermodynamics . . . . . 16
2.1.2 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Response functions and stability conditions . . . . . . . . 18
2.1.4 Stability conditions . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Throttling, osmotic pressure and chemical batteries . . . . . . . . 20
2.2.1 Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Osmosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Electrolytes and batteries . . . . . . . . . . . . . . . . . . 22

3 Phase transitions (2) 23
3.1 Thermodynamical phase transitions . . . . . . . . . . . . . . . . 23

3.1.1 Classification of phase transitions . . . . . . . . . . . . . . 23
3.1.2 Van der Waals gas . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Critical exponents . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 Binary mixtures . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 (Ginzburg-)Landau theory . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Continuous phase transition . . . . . . . . . . . . . . . . . 28
3.2.2 First-order transition . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Magnetisation and superconductors . . . . . . . . . . . . 29
3.2.4 Hagedorn phase transition . . . . . . . . . . . . . . . . . . 30

4 Equilibrium statistical mechanics (8) 30
4.1 Canonical Ensemble, Debye solid . . . . . . . . . . . . . . . . . . 30

4.1.1 Microcanonical ensable . . . . . . . . . . . . . . . . . . . 30
4.1.2 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Energy fluctuations . . . . . . . . . . . . . . . . . . . . . . 32

1



4.1.4 Semiclassical ideal gas . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Debye lattice . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Spin lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Transfer matrix method . . . . . . . . . . . . . . . . . . . 35
4.2.2 Mean field method . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Scaling and renormalisation . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Homogeneous functions and widom scaling . . . . . . . . 36
4.3.2 Kadanoff scaling . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Renormalisation . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Numerical solutions, Metropolis algorithm . . . . . . . . . . . . . 39
4.4.1 Importance sampling . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . 41

4.5 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . 42
4.5.2 Chemical potential . . . . . . . . . . . . . . . . . . . . . . 43
4.5.3 Ideal classical gas . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.4 Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.5 Blackbody radiation . . . . . . . . . . . . . . . . . . . . . 44

4.6 Ideal Bose-Einstein quantum gases . . . . . . . . . . . . . . . . . 45
4.6.1 Quantum gases . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.2 Bose Einstein gas . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Bogoliubov mean field theory . . . . . . . . . . . . . . . . . . . . 48
4.7.1 Short reminder of the scattering theory . . . . . . . . . . 49
4.7.2 Bogoliubov mean field theory . . . . . . . . . . . . . . . . 49

4.8 Statistical mechanics and path integration . . . . . . . . . . . . . 51

5 Out-of-equilibrium statistical mechanics 53
5.1 Fluctuations, correlation functions and the Wick’s theorem . . . 53

5.1.1 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Dynamical fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 (Different) generalised forces and currents . . . . . . . . . 55
5.2.2 Regression of Fluctuations . . . . . . . . . . . . . . . . . . 56

5.3 Wiener-Knitchine theorem, response matrix, fluctuation-dissipation
Thoerem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 Wiener-Knitchine theorem . . . . . . . . . . . . . . . . . . 57
5.3.2 Linear response theory . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Fluctuation-dissipation theorem . . . . . . . . . . . . . . 59

6 Transport coefficients 60
6.1 Brownian motion, Langevian equation . . . . . . . . . . . . . . . 60

6.1.1 The Fokker-Planck equation . . . . . . . . . . . . . . . . . 61
6.2 Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Boltzman equation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Cross section . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2 Boltzmann equation without collisions . . . . . . . . . . . 64
6.3.3 Heat conduction in the approximation of relaxation time . 65
6.3.4 Collision term . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.5 Conservation laws . . . . . . . . . . . . . . . . . . . . . . 66
6.3.6 H-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



7 Bonus lectures 68
7.1 Black hole entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Maxwell demon, Szilard machine and Landauer heat . . . . . . . 68
7.3 Hagedorn phase transition . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Introduction to complexity theory . . . . . . . . . . . . . . . . . 70
7.5 Quantum theory at finite temperature via path integration . . . 70
7.6 Hagedorn phase transition . . . . . . . . . . . . . . . . . . . . . . 70
7.7 Statistical physics and brain . . . . . . . . . . . . . . . . . . . . . 70
7.8 Hagedorn phase transition . . . . . . . . . . . . . . . . . . . . . . 70

1 Introduction (4)

1.1 Introduction: what it is all about?

Statistical physics might be one of the most conceptually difficult subjects you
will encounter. Sorry about that! Don’t worry though, we will (again) barely
scratch the subject. The reason I think it is a difficult subject is that it touches
and connects many scientific fields and each of those cases has its own specialities
and nuances that are hard to grasp.

Notice that we said ’scientific fields’ and not ’physical fields’. The topics we
are going to discuss are far overreaching the fields of physics. We have chemists
discussing the Gibbs energy, biologists talking about the effect of temperature,
informaticians considering entropy and so on. In his famous lecture ’What is
life?’ Schrödinger talks about negative entropy as the fuel needed by the life.

Consider a simple example from signal analysis. You want to communicate a
message – that means to transfer information to someone else. Is there any limit
to this process or can you pack the information as densely as you please? You
cannot as there exist thermal noise that can dominate over your message. How
to overcome this issue? You can ’speak louder’, that means spend more energy
to communicate. Now this triangle seems familiar, doesn’t it? Information
(entropy), temperature, energy.

The goal of this course will be mostly to understand the physical aspects
of statistical physics. However, now and then we will devote some time to pay
homage to the vast of connections that stems from it.

1.1.1 Energy, entropy and temperature

At this point of your studies, you have perhaps noticed already: energy is
everywhere, from the first course in mechanics to quantum field theory and
everything between. Not only that, you perhaps understand why is this so, the
reason is the famous Nöther theorem. As long as the laws of physics do not
depend on time a quantity (that we call the energy) is conserved. The laws of
micro and macro world seem to be both independent of time and therefore there
is a quantity connecting the two worlds which share very few things otherwise.
This is the reason why the energy plays a crucial role in statistical physics,
perhaps even more than in any areas of physics and we will have to pay great
attention to many details related to it.

A novel thing that appeared in study of microworld is called the entropy.
Surprisingly, it appeared before we realised it was due to microscopic behaviour
of matter constituents. So, what is the entropy? It describes the complexity of
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the microscopic world. How much we don’t know when we know only macro-
scopic aspects of the system we study? It is the measure of missing information
(and not only missing information, wait for chapter about the information the-
ory). Some people claim that the entropy is the most important quantity in
physics. It seems to be related to the arrow of time and dictates how will the
final stage of our universe look like. Surprisingly, the entropy was discovered in
a somewhat different context (as Clausius entropy) and was only later realised
to be also related to the usual definition (and another definitions followed).

So, what is the relation between those two important concepts? Recall the
Gibbs free energy F = E − TS the system tries to minimize. This can be done
either by minimizing the energy (which usually leads to very ordered system)
or by maximizing the entropy (which leads to disordered system). Which of the
forces dominate? That depends on the temperature. This quantity has been
historically derived in a different way which leaves many with the impression
that it is the measure of microscopic movement of particles while it is so much
more. It is however the thing that relates energy with the entropy. A surprising
aspect of this more general definition is that under very special circumstances
the temperature can be negative.

1.1.2 Liouville flow and ergodicity

References: Reichl A2.3, C Statistics in general is about handling the uknown.
Statistical physics is therefore about handling the uknown in physical systems.
As it turns out, the world contains way too much information. We use physics to
make predictions about the world. Given we know the state of the system right
now and we know the laws it follows then we can extrapolate into the future.
One of the problems is that the world is complicated – it contains way to much
information. We don’t care about most of it, that’s the difference between
microstates and macrostates. The first hint is that in statistical physics we
are often interested in stationary states. There might be some small temporal
fluctuations but they are averaged out.

〈A〉T = lim
T→∞

1

T

T+t0∫
t0

A(t)dt. (1)

This is on a paper, in a real experiment measuring the temperature in the room
for a couple of seconds is sufficient! Ok, how is this helpful?

We use the notion of phase space. For N particles this space is 6N dimen-
sional. If we know the exact position of a state XN (pN ,xN ) we can evolve it
using Hamiltonian equations. Sometimes, we are not so sure, we can only know
a probability distribution ρ(XN , t) that has

∫
ρ(XN , t)dXN = 1. Probability to

find the system in a small phase region of volume V0 is

P (R) =

∫
R

ρ(XN , t)dXN . (2)

Now the system does move in the phase space which is described by ẊN =
(ṗN , ẋN ). By this the probability distribution flows like a liquid! And from

Hamiltonian equations we know that this liquid is incompressible,∇XN ·ẊN = 0.
One can then write down the e.o.m for ρ(XN , t) as
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i
∂ρ(XN , t)

∂t
= L̂Nρ(XN , t), (3)

where L̂N is the Liouville operator (−i times the Poisson bracket operator),
the equation is called the Liouville equation and its (formal) solution is

ρ(XN , t) = e−iL̂
N tρ(XN , t). (4)

So there is a good and well defined way how to handle this uncertainty.
However, this still contains more detail that we are interested in. There is
another way how to handle this.

A system that follows Hamiltonian equations may have many conserved
quantities, such as the total energy. That means the system cannot move
through entire phase space but only through some surface it it, let us denote
it SE . We will call the system ergodic if during the Hamilton flow it passes
through a small neighbourhood of every point in SE . We can define

〈A〉S =
1

Σ(E)

∫
SE

A(XN )dSE . (5)

The ergodic theorem states that for an ergodic system 〈A〉S = 〈A〉T . This
means we can obtain estimates about temporal averages (which is what we can
measure) by calculation phase-space averages. And this is what we can done by
figuring out how does the allowed phase space look like.

A necessary condition is that there can be no other constrains splitting the
phase space.

1.1.3 Ensembles

The tricky thing, obviously, is to decide how to accurately describe ’all possible
states of the system’. There are basically three common choices. The first is
called the microcanonical ensemble – consider all possible states of the given
energy, all of them with equal probability (indifference principle) which also
maximizes the entropy under the fixed conditions.

The second choice is that we don’t fix the total energy but only the number
of constituents of the system. This is useful in the cases where the system is in
thermal contact with the environment, that means it can exchange heat. Recall
that due to thermal radiation it is impossible to have perfectly isolated system.
The only way of having one is to consider everything to be a single system –
then it has nothing to be isolated from. So our universe can (?) be considered a
thermally isolated system with fixed (?) energy and we can describe it using the
microcanonical ensemble. But what if we don’t care about the entire universe
but only about the balloon filled with gas in from of us? Than we can split the
universe into the balloon part and everything else (which we call the reservoir).
Now this everything else is of course very large but we still don’t assume it to be
unaffected by our system. When our system has more energy then the reservoir
has less of it and its microcanonical ensemble description changes – which leads
to different probabilities of different (energy) states of our tiny system. This
leads to the Boltzman distribution.

The third choice is that our system can exchange both heat and particles,
so called grand canonical ensemble. This isn’t only useful when our balloon has
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holes in it and particles can move in and out. For example, some particles can
just pop into existence if we give them the chance, for example photons in a
box or ”holes and anti-holes” it an atomic lattice. This shows that when we
say particles we actually mean something more general – something that carries
new degrees of freedom.

These are some restrictions but they are not overly restricted. Usually the
task of performing a summation over all possible states is the only thing we
need to do but it still is a bit too much so we need to simplify the model under
consideration a bit. We will return to those problems in a couple of lectures, but
before that, we will (re)visit some important topics in the probability theory.
If time permits, we will try to finish the semester with a discussion of limits of
limits of our knowledge. These are especially easy to put down in the theory
of information and since statistical physics are so related to it, we can borrow
some lessons.

1.2 Probability theory I

1.2.1 Generating random numbers

References: Cerny 2.5 and also for the final example https://mathworld.

wolfram.com/SpherePointPicking.html

Usually we work this way: from a dataset we want to compute things like mo-
ments of the distribution to reproduce the underlying distribution. What if we
need to do this in reverse: begin with a random distribution and generate a set
of random numbers (or something derived from them) that has the same sta-
tistical properties. Even though most codes know to generate random numbers
with normal probability distribution (and often some other common distribu-
tions), we will assume it only can do the uniform random distribution in the
interval 0 ≤ x ≤ 1.

It is easy to produce a different uniform for it, for example if we want random
umbers in (a, b) interval one just needs to use y = a+(b−a)∗x. That was easy, let
us try something different. Assume we want to have a probability distribution

function f(x) and also the cumulative distribution function F (x) =
x∫
−∞

f(x)dx.

Now notice an interesting thing. We can generate numbers between 0 and 1
(as we assumed), but the cumulative function is also bounded the same way:
0 ≤ F (x) ≤ 1. How can we utilise this? (Draw a simple cumulative function to
figure this out.)

The thing to do is to invert the cumulative distribution function: y = F−1(x)
with 0 ≤ x ≤ 1 will have the distribution f(x).

A formal proof goes like this

〈q〉 =

∞∫
−∞

q(p)f(p)dp =

1∫
0

q(F−1(x))f(F−1(x))
1

f(F−1(x))
dx =

1∫
0

q(F−1(x))dx.

(6)
Example: How to generate uniformly random points on a sphere if we

can generate uniformly random numbers 0 ≤ ri ≤ 1? The naive choice to
generate random (cos r1 sin r2, sin r1 sin r2, cos r2) does not work. We have to
take deformed geometry of the sphere into account. Every small surface element
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dS needs to have the same probability 1
4πdS = f(θ, φ)dθdφ. Now since dS =

sin(θ)dθdφ we have f(θ, φ) = 1
4π sin θ. Marginalizing w.r.t. φ gives f(θ) =

sin(θ)/2. The c.d.f is F (φ) = 1
2 (1− cos θ). We need to invert this, which can be

done as F−1(y) = arccos(1− 2y). Now y can be generated randomly using ri.

1.2.2 Characteristic functions and cumulants

References: Reichl A 1.2.3
The characteristic function is defined as

Φx(k) = 〈eikx〉 =

∞∫
−∞

dxeikxfx(x) =

∞∑
n=0

(ik)n〈xn〉
n!

, (7)

it is completely fixed by the moments and can be used to obtain distribution
back from the moments by

fx(x) =
1

2π

∞∫
−∞

dke−ikxΦx(k). (8)

The moments can be obtained by taking derivatives

〈xn〉 = lim
k→0

(−i)n d
nΦX(n)

dkn
. (9)

Characteristic functions has some important properties (closed under mul-
tiplication): ΦX(0) = 1, |ΦX(k)| < 1 and ΦX(−k) = Φ∗X(k). The characteristic
function can be used to defined cumulants (which can be obtained from the
moments and vice versa):

ln ΦX(k) =

∞∑
i=1

(ik)n

n!
Cn(X). (10)

Let us list the first couple of them

C1(X) = 〈x〉, (11)

C2(X) = 〈x2〉 − 〈x〉2,
C3(X) = 〈x3〉 − 3〈x〉〈x2〉+ 2〈x〉3,
C4(X) = 〈x4〉 − 3〈x2〉2 − 4〈x〉〈x3〉+ 12〈x〉2〈x2〉 − 6〈x〉4.

To appreciate the existence of cumulants, let us note that the first five mo-
ments of normal distribution are

〈xn〉 =
(
µ, µ2 + σ2, µ(µ2 + 3σ2), µ4 + 6µ2σ2 + 3σ4, µ(µ4 + 10µ2σ2 + 15σ2)

)
(12)

while the first five cumulants are

Cn =
(
µ, σ2, 0, 0, 0

)
(13)

(and it is easy to guess the rest of the list).
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(You can also use characteristic function to understand the Wick’s theorem
〈xk1 ...xkl〉 =

∑
all possible pairings

〈xkP1
xkP2
〉...〈xkPl−1

xkPl 〉. Details can be found

here http://ckw.phys.ncku.edu.tw/public/pub/Notes/PathIntegral/Zinn-Justin/
01._GaussianIntegrals/1.2._GaussianExpectationValues-Wick’sTheorem.

pdf.)

1.2.3 Central limit theorem

References: Reichl A 1.4 Many things follow the normal probability distribu-
tion. This can be easily proven using the characteristic function. Consider a
random number YN = (1/N) (X1 + ...+Xn) − 〈x〉 where X are random num-
bers of unknown distribution. Can we tell something about the fluctuations of

Y ? Let us denote Zi = (1/N) (Xi − 〈x〉) so YN =
N∑
i=1

Zi. The characteristic

function for Zi can be written as

ΦZ(k,N) =

∞∫
−∞

ei(k/N)(x−〈x〉))PX(x)dx = 1− 1

2

k2

N2
σ2
X + ... (14)

The characteristic function of YN is

ΦYN (k) =

(
1− 1

2

k2

N2
σ2
x + ...

)N
→ exp

(
−k

2σ2
X

2N

)
(15)

in the N →∞ limit. From this we the distribution for YN

fYN (y)→ 1

2π

∞∫
−∞

dkeiky exp

(
−k

2σ2
X

2N

)
=

√
N

2πσ2
x

exp

(
−Ny

2

2σ2
X

)
. (16)

1.3 Probability theory II

1.3.1 Bayesian statistics

References (sec. 1-5) https://arxiv.org/pdf/hep-ph/9512295.pdf
Assume we have a fair coin and are about the flip it. What are the odds of
getting head? Of course 50%. Now imagine I flipped the coin and dropped
it, it is now under table and we don’t see it. What are the odds of it being
head? Now some of you might think it is still 50% and some of you find this
question stupid: there is no uncertainty anymore, the coin has been flipped. If
you are the first type of person, congratulation, you are a bayesian. If you are
the second type, we are going to turn you now.

There are two other usual approaches to probability: combinatorial and
frequentistic.
Combinatorial: out of all possible results, how many turn out in a certain
way?
Frequentistic: if we repeat this experiment a very huge number of times, in
what fraction of them would we get this result?
Bayesian: given my previous experience, what is my degree of belief in this
given results? (How to measure degree of belief? Make a bet!)
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The problem with the combinatorial is the question if all results are equally
probable. The problem with frequentistic is the issue with the coin under table
– the result would always be the same, is there any real uncertainty or only the
lack of our knowledge? Finetti claimed that: probability does not exist. And
that might be correct (depends on how does quantum theory really works). But
probability is a good way to model our uncertainty which follows from our lack
of knowledge.

Important concept is the conditioned probability. Assume we have a class of
children. You can either ask ’what is the probability I’ll randomly choose a kid
of heigh larger than 160cm?’ Another type of question is ’what is the probability
I’ll randomly choose a boy of heigh larger than 160cm?’ In the second case, we
have applied a condition: the selected pupil has to be a boy. This is usually
denoted as P (h > 160cm|boy). Following the aforementioned references we will
use E for event, H for a hypothesis, H̄ for it’s complement and Ω for every
possibility. Trivially P (E) = P (E|Ω). A trivial thing holds

P (E) = P (E ∩H) + P (E ∩ H̄). (17)

’The probability of detector producing a signal is the probability of producing
the signal given an electron bumped into it plus the probability of producing
the she signal given an electron didn’t bump into it.’ Still trivial.

Another trivial observations are

P (E ∩H) = P (E|H)P (H) = P (H|E)P (E). (18)

which we usually present in the form P (E|H) = P (E∩H)
P (H) or

P (H|E)

P (H)
=
P (E|H)

P (E)
. (19)

Usually there is a set of different hypothesis
⋃
i

Hi = Ω. From this we have

P (E) =
∑
i

P (E|Hi)P (Hi). (20)

We can plug this into the previous equation to obtain

P (Hi|E) =
P (E|Hi)P (Hi)∑
j

P (E|Hj)P (Hj)
. (21)

This is the typical form of the Bayes theorem.
Example: You have a particle A detector that is triggered by particle A

with 90% success rate. Unfortunately, it is also triggered by a particle B that is
in the background with 2%. You know that their densities are in the ratio 9 : 1.
When your detector triggers, what is the probability it was really triggered by
A? And what is the signal-to-noise ratio (S/N)?

P (A|T ) =
P (T |A)P (A)

P (T |A)P (A) + P (T |B)P (B)
≈ 0.84

S/N = P (A|T )/P (B|T ) ≈ 5.3. (22)

Or in general:
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S/N =
P (E|S)

P (E|N)

P (E)

P (N)
. (23)

So in noisy conditions P (N) � P (E) you need to have a very selective
detector P (E|S)� P (E|N).

We can cast the theorem in yet another form!

P (Hi|E,H0) = αP (Hi|H0), (24)

α =
P (E|Hi, H0)∑

i

P (E|Hi, H0)P (Hi|H0)
,

where we have also included previous conditioning H0 (sort of underlying
assumptions about the theory and so on), they won’t play any role in the calcu-
lations, it is just a reminder for us. Now this is an important formulation of the
Bayes theorem, it is the ground for the approach/interpretation of ’learning by
experience’. On the R.H.S. we have the a priori probability estimate (prior),
the L.H.S. is the a posteriori probability after gaining new information. α is the
coefficient that tells us how to adjust the probabilities. P (E|Hi, H0) is called
the likelihood.

Example: How long does it take you are tossing a coin that has a head
on both sides? You initially assume P (head|fair) = P (tail|fair) = 1/2. You
have a suspicion that the coin might be fake and then P (head|fake) = 1 −
P (tail|fake) = 1. You also have to assume some probabilities of the coin being
a fake, lets say 5%. You now toss the coin N times and see all heads! How to
adjust your initial assumptions (95− 5 for the case of fair coin)?

P (fake|headN ) =
P (headN |fake)P (fake)

P (headN |fake).P (fake) + P (headN |fair).P (fair)
(25)

=
P (fake)

P (fake) + 2−NP (fair)
→ 1,

P (fair|headN ) =
P (fairN |fake)P (fair)

P (headN |fake).P (fake) + P (headN |fair).P (fair)

=
2−NP (fair)

P (fake) + 2−NP (fair)
→ 0.

Our faith in the coin quickly decays!
We have complained about problems with combinatorial/frequentist ap-

proach to probability, now we overlooked the problem with Bayesian one. The
tricky thing is that we have to make some initial guesses about the probabili-
ties (P (fake) and P (fair)) and this changes our results. A common thing is
to assume as little as possible (the indifference principle or the maximum en-
tropy principle). However, as we have seen, the initial probabilities are quickly
replaced by our newly gained experience.

This is how hypothesis testing in science should work. One formulate a null
hypothesis (’This effect doesn’t exist’) and a novel hypothesis (’It does exist
and leads to this ...’) and then we perform the experiment and ask: to what
extent are the results consistent with null hypothesis and the novel one? Why

10



is it important? Sometimes we are dealing with a complicated theory, make
loads of calculations and then say: ’If my theory is right, we should see this!’
But we also have to check if the same effect cannot be reproduced without this
theory/effect, maybe only by a pure luck. And if so, how many positive results
do we need to have to trust the new theory?

1.3.2 Markov chain

https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf, Reichl A.2
Consider a random variable Y that can assume values y1, ..., yN and moves be-
tween them in discrete time steps s = 1, ...,∞. The probability to be in the
state n at step s is denoted Pn(s). Obviously

Pn(s+ 1) =

N∑
m=1

Pm(s)P (m, s|n, s+ 1), (26)

where P (m, s|n, q is the conditional probability also called the transition prob-
ability. In a more general form

P (n0, s0|n, s+ 1) =

N∑
m=1

P (n0, s0|m, s)P (m, s|n, s+ 1). (27)

In some cases the transition probabilities do not change with time, in that case

Pn(s) =

N∑
m=1

Pm(0)(Qs)m,n. (28)

The transition matrix Q carries all important information about the transition
rates and one can solve the equations for any transition process in terms of its
left and right eigenvectors and eigenvalues (it is not symmetric usually). We
can rewrite the transition equation in the following form:

P (n, t+ ∆t) =

M∑
n=1

P (m, t)P (m, t|n, t+ ∆t). (29)

We can derive the e.o.m. as

∂P (n, t)

∂t
= lim

∆t→0

(
P (n, t+ ∆t)− P (n, t)

∆t

)
= lim

∆t→0

1

∆t

M∑
n=1

P (m, t) (P (m, t|n, t+ ∆t)− δmn)

(30)
which we can expand into

P (m, t|n, t+ ∆t) = δmn

(
1−∆t

M∑
l=1

wm,l

)
+ wm,n∆t+ ... (31)

Here wm,n is called the probability of transition. Using it we have

∂P (n, t)

∂t
=

M∑
m=1

(P (m, t)wm,n(t)− P1(n, t)wn,m(t)) (32)

11
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which is called the master equation. Now this one is easy to interpret. From this
we can see the condition for a stationary solution which is called the detailed
balance

P s(n)wn,m = P s(m)wm,n, (33)

where s is for stationary: P s(n) = lim
t→∞

P (n, t).

1.4 Basics of information theory

https://arxiv.org/abs/1805.11965 and also https://www.fil.ion.ucl.ac.
uk/~wpenny/course/info.pdf

1.4.1 Information content

Information is a paradox. It cannot exist without a physical manifestation but
it does not depend on a physical manifestation. The same information can have
numerous forms. Information is what resolves uncertainty. The smallest amount
of information is a single bit – yes or no answer. Claude Shannon was thinking
about sending information, what is the information contained in a message?

His first clue was that the information should be (linearly) proportional to
the message length. Two messages of equal length carry the same information
as one information of double length. Also, the number of possible messages is a
list of possible combinations of letters. Now the number of combinations with
k letters is kN and to make this linear in N we need to take the logarithm (any
works, base of 2 is preferred in the information theory), that is

S ∼ log Ω,Ω = kN . (34)

We are on the right track, but we have to consider that not all messages are
equally likely. Information in a message should be equal to surprise it makes.
For example, imagine 0 stands for ’no fire’ and 1 stands for ’fire’. Your alarm
keeps sending you 000000000.... and if the next data bit is again 0 you obtain
way less information (that means, it is easier to guess) that if you receive 1. This
is also true for language. There are 26 letters in English alphabet but if you
receive information spaghet ∗ ti with one letter missing, are you really missing
any information at all? No, language is very redundant! You might think that
the information per letter is log2 26 ≈ 4.7, but actually it is somewhere between
2.5− 3. What is the point of redundancy? So it is easier to spot ertors!

Ok, imagine we have a long message with two letters appearing with proba-
bilities p1, p2. Long enough message with contain NPi letters of each type and
there are

N !

(p1N)!((p2N)!
= 2NS (35)

such messages. We take this to be the definition of S = −p1 log p1 − p2 log p2,
the Shannon entropy (he chose this word deliberately). This can be generalised
to k letters as

SA = −
k∑
i=1

pi log pi. (36)

12

https://arxiv.org/abs/1805.11965
https://www.fil.ion.ucl.ac.uk/~wpenny/course/info.pdf
https://www.fil.ion.ucl.ac.uk/~wpenny/course/info.pdf
samuel
Highlight

samuel
Highlight



(The subscript is for this given probability distribution). This is called the
information content of message, or the measure of average surprise the message
contains. (If there is only one letter that has p1 = 1, there is no surprise and
no information gain.) Maximal information is obtained if pi = 1/k, in that case
the entropy per letter is

SA =

k∑
i=1

(1/k) log(1/k) = log k. (37)

1.4.2 Optimal coding

Cerny 2.11
Imagine we want to share an information, how to make (average) message as
short as possible? Recall the Morse code, the shortest sequences are used to
code the most frequently used letters. How could we translate this into two-digit
code (without a break). We can use prefix code, that means no coded word is
the beginning sequence of any other. For example, if we use 0010 to code the
letter A, no other word beginning with this sequence is allowed. Assume we
want to code m messages (for example m = 26 to code the alphabet or m = 10
to code a number) and denote si lengths of i = 1, ...,m codes. For the length of
all codes we have the Kraft equality∑

i

2−si ≤ 1. (38)

(How to prove it: think of a tree-diagram where each branch corresponds to 0 or
1. Each point corresponds to a code: 0, 1, 00, ... If we pick a point to represent a
prefix-free code, all points following in are to be discarded. To each code assign
2si . Take sm to be the longest code, there are 2sm points with corresponding
length. We are either using all of them, then

∑
i

2−si = 1 or don’t need some of

them, then
∑
i

2−si < 1.

Optimal coding means we will assign shorter codes to more frequent words
(given we know their probabilities pi? This is an optimisation problem:

L =
∑
i

pisi − λ
(
2Li − 1

)
. (39)

Now the solution is si = − log2 pi. The optimal code length therefore is

L = −
∑
i

pi log pi. (40)

Excercise: Choose and verify coding of two messages that appear with proba-
bilities p1 = 0.1, p2 = 0.9 if you can use s = 1, 4.

1.4.3 Conditional entropy

Just the existence of a message does not mean that any information is being
transferred as communication can be noisy. Assume Alice is sending random
variable X that can take values x and Bob receives Y = y. There is a joint
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probability PX,Y (xi, yj) that Alice sends xi and Bob receives yj . Probability
that Bob receives yj is

PY (yj) =
∑
i

PX,Y (xi, yj). (41)

His estimate that Alice sent xi is given by the conditional probability

PX|Y (xi|yj) =
PX,Y (xi, yj)

PY (yj)
. (42)

The Shannon entropy of this conditional probability is

SX|Y=yj = −
∑
i

PX|Y (xi|yj) log(PX|Y (xi|yj)). (43)

If we average over all possible received messages we obtain

∑
j

PY (yj)SX|Y = −
∑
i,j

PX,Y (xi, yj) logPX,Y (xi, yj) +
∑
i,j

PX,Y (xi, yj) logPY (yj)(44)

= SXY − SY .

This is called the conditional entropy SX|Y = S(X|Y ), it is the entropy
that remains in the probability distribution X once Y is known (the missing
information). By construction, it is possitive SXY − SY ≥ 0. A very useful
concept is the mutual information, that is the information Alice send minus
what was lost in the process:

I(X;Y ) = SX − SXY + SY . (45)

It can be proven to be positive.

1.4.4 Relative entropy

How wrong are we? Suppose we are observing a random variable X with dis-
tribution PX but think it is QX . We see s different outcomes with probabilities
qi, i = 1, ..., s and after N experiments we estimate the probability to be

P =
∏
i

qpiNi
N !∏

j

(pjN)!
, (46)

where the second factor is combinatorial. For large N we have N !∏
j

(pjN)! ∼

2
−N

∑
i
pi log pi

. Therefore

P ∼ 2
−N

∑
i
pi(log pi−log qi)

. (47)

From this we defined the relative entropy

S(PX ||QX) =
∑
i

pi(logpi − logqi). (48)

This is the information we gain if we accept the new probability distribution P .
We can be sure our initial distribution is wrong when NS(PX ||QX)� 1.

The entropy satisfies some important properties we will just list here
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1. Subaditivity: SX + SY − SXY ≥ 0.

2. Monoticity of rel. entropy: S(PX,Y ||QX,Y ) ≥ S(PX ||QX).

3. Strong subaditivity: SXY + SY Z ≥ SY + SXY Z .

You don’t need to learn them, they are here just to show you where this
field is heading to.

1.4.5 Quantum information

There are two types of probabilities. We know statistical probabilities (lack of
information about the system) and quantum probabilities (quantum superposi-
tion). How to mix them together? What can we do if we have a machine that
randomly generates quantum states? This can be described using the density
matrix

ρ =
∑
j

pj |ψj〉〈ψj |, (49)

where |ψj〉 are pure quantum states and pj are the corresponding probabilities.
A mean value of an obsarvable A is obtained as

〈A〉 = Tr(ρA). (50)

There is another way to derive this. Consider we have a system A and an
environment B. The total Hilbert is of the form HAB = HA ⊗HB . The states
are of the form

ψAB = ψA ⊗ ψB , (51)

Observables in A can be expressed as OA ⊗ 1B

〈ψAB |OA ⊗ 1B |ψAB〉 = 〈ψA|OA|ψA〉〈ψB |1B |ψB〉. (52)

As an example think ofHA as being 2-dimensional andHB as three dimensional.
A general state (is pure but entangled and) is in the form

ψAB =

(
∗ ∗ ∗
∗ ∗ ∗

)
∼
( √

p1 0 0
0

√
p2 0

)
(53)

where the later form can be obtained by unitary transformation (pi sum up to
one). In general any pure state can be written as

ψAB =
∑
i

√
piψ

i
A ⊗ ψiB (54)

What is the expectation value of OA? It is

〈OA〉 = 〈ψAB |OA ⊗ 1B |ψAB〉 =
∑
i

pi〈ψiA|OA|ψiA〉 (55)

which is exactly TrρAOA for ρA =
∑
i

pi|ψiA〉〈ψiA|. A pure state is a state that

has ρ2 = ρ.
There are many definitions of quantum entropies but the most important is

the von Neumann entropy
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S(ρA) = −TrρA log ρA. (56)

This, no surprise, yields now S(ρA) = −
∑
i

pi log pi.

2 Thermodynamics (2)

2.1 Thermodynamic potentials, response functions and sta-
bility conditions

References: Reichl 3.1 – 3.7.

2.1.1 The fundamental equation(s) of thermodynamics

The starting point of thermodynamics were the three (plus one) laws:

• Zeroth law: Two bodies in equilibrium with a third one are in equilibrium
with each other.

• First law: Energy is conserved.

• Second law: Heat flows spontaneously from high temperature to low
temperature.

• Third law: It is not possible to reach zero (absolute) temperature in a
finite number of reversible steps.

Now imagine you knew nothing about thermodynamics, you wouldn’t under-
stand three of them, but you would agree with first law. There are start dif-
ferences between the physics of a single or a few particles and the physics of
N ∼ 1023 particles, new important concepts such as the entropy play a cru-
cial law. However, there some concepts which are equally valuable for both
microscopic and macroscopic systems – energy being a prime example.

What is the source of the omnipresence of energy? Why it seems to appear
nearly everywhere? It is due to Nöether’s theorem, as long as the law of physics
(expressed in terms of Lagrangian) do not change in time there is conserved
quantity we call energy. This makes the energy one of the bridges connecting
the world of the micro and the macro.

The changes in internal energy is given by

dU = δQ− δW + µjdNj , (57)

where δQ is the heat, δW and µj is the chemical potential for ν different
types of particles. We use δ instead of d to underline that those quantities are
small, but are not exact differentials (meaning there is no quantity such that
δQ = Q(s + d s) − Q(s). The work done upon (or by) the system can be of
many forms

δW = PdV − σdA− φde+ ..., (58)

where the PdV is well known, σ is the surface tension coupled to the surface
area dA, φ is the electric potential coupled to the change of charge de and so
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on. In general we can write δW = −Y dX, where Y = −P, σ, φ, .... are the
generalised forces and dX = dV, dA, de, ... are generalised displacements (note
a minus sign in front of P ).

A novel variable in the context of statistical physics is the entropy defined
as

S = kB log Ω, (59)

where Ω. Change of the entropy for a reversible process is a thermodynamic
property

dS =
δQ

T
+ diS, (60)

where diS denotes contribution from irreversible processes which is always
positive; therefore dS ≥ 0. Note that the entropy S is an extensive quantity

S (λU, λX, {λNi}) = λ (U,X, {Ni}) . (61)

Together we have

TdS ≥ δQ = dU − Y dX −
∑

µj dNj . (62)

In thermodynamics quantities often depend on many others and one has to

be careful when taking derivatives. Usually this is explicitly states as
(
∂y
∂x

)
z

where the subscript means while keeping z fixed.
From (62) we have

(
∂S

∂U

)
X,{Nj}

=
1

T
= β(

∂S

∂X

)
U,{Nj}

= −Y
T

(63)(
∂S

∂Nj

)
U,X

= =
µj
T

(64)

These are called the thermal, mechanical and chemical equations of state.

An important equation can be taking by taking the derivative d(λS)
dλ . The by

using (63) and setting λ = 1 one obtains the Euler equation (also sometimes
called the fundamental equation of thermodynamics)

TS = U −XY − µjNj . (65)

By taking its differential and substracting (62) one gets the Gibbs-Duhem equa-
tion which relates differentials of intensive variables

SdT +XdY +Njdµj = 0. (66)

2.1.2 Potentials

We are interested in the amount of energy that can be stored and, let us be
honest, extracted from a system. This all follows from (62) which different con-
strains applied and different set of variables.
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Internal energy
This one we have seen already, it is U(S,X, {Nj}). The other quantities T, Y, µ
are considered to depend on S,XandNj (see the equations of state).

The total differential dU can be obtained directly from (62) and so can be
the fundamental equation, while the equation of states follows from (63). From
(62) we can observe that equilibrium state (with fixed S,X,Nj is the one with
minimal energy.

Useful relations can be obtained from the fact that the order of derivatives
can be exchanged and that many quantities are related by derivatives. For
example, take U and take derivatives w.r.t. S and X. Using this one gets(
∂T
∂X

)
S,{Nj}

=
(
∂Y
∂S

)
X,{Nj}

, there are three more relations that can be obtained

this way, jointly they are called Maxwell relations.

Enthalpy
The enthalpy H(S, Y,Nj) describes a system that is thermally isolated and
closed but mechanically coupled to the exterior. It has the following fundamen-
tal equation

H = U − Y X, (67)

where −Y X comes from the Legendre transformation from variables (S,X,Nj)
to (S, Y,Nj). A similar set of equations can be constructed from (63), (62)
and (65) (total differential, fundamental equation, equation of states, Maxwell
equations and the equilibrium condition.)

Helmholtz Free Energy
For processes at fixed T,X,Nj the potential is the Helmholtz Free Energy with
the fundamental equation

A = U − ST, (68)

where the origin of −ST is again from the Legendre transformation. Again,
similar set of equations can be derived.

Gibbs Free Energy
For processes at fixed T, Y,Nj the potential is the Helmholtz Free Energy with
the fundamental equation

G = U − ST −XY, (69)

two new terms, but rest is the same.

Grand potential
For processes at fixed T,Xandµj the potential is the Grand potential with the
fundamental equation

Ω = U − ST − µjNj = XY, (70)

a very simple expression indeed!

2.1.3 Response functions and stability conditions

Response functions tell us how does observables of the system change when we
act upon it. Usually we try to keep as many quantities fixed as possible and
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therefore we various types of the response functions. For example, the specific
heat C relates the increase in temperature dT after adding amount of heat δQ,
but the temperature increment is different if we kept the volume V fixed or the
pressure P fixed and so on. Therefore, there we have various heat capacities
CP , CV and so on. Response values are valuable as they can be easily measured
and therefore connects the micro and macro worlds.

With generalised forces X and positions Y we can do the same exercise, one
just need to utilise the equation (62) and possible apply a Maxwell relation to
change a relation here and there. We have to heat capacities

CX,Nj =

(
∂U

∂T

)
X,Nj

= −T
(
∂2A

∂T 2

)
X,Nj

(71)

CY,Nj = CX,Nj +

[(
∂U

∂X

)
T,Nj

− Y

](
∂X

∂T

)
Y,Nj

= −T
(
∂2G

∂T 2

)
Y,Nj

these are the heat response functions. We also have mechanical response func-
tions. For general case they are called isothermal susceptibility

χT,Nj =

(
∂X

∂Y

)
T,Nj

= −
(
∂2G

∂2Y

)
T,Nj

(72)

adiabatic susceptibility

χS,Nj =

(
∂X

∂Y

)
S,Nj

= −
(
∂2H

∂2Y

)
S,Nj

(73)

and thermal expansivity

αY,Nj =

(
∂X

∂T

)
Y,Nj

. (74)

These are the definitions for XYT systems, for PVT systems they include the
factor 1/V in their definition.

An important fact is that using the expression for potentials, the response
functions can be related to each other

χT,Nj
(
CY,Nj − CX,Nj

)
= Tα2

Y,Nj (75)

CY,Nj
(
χT,Nj − χS,Nj

)
= Tα2

Y,Nj (76)

CY,Nj
CX,Nj

=
χT,Nj
χS,Nj

(77)

2.1.4 Stability conditions

For an isolated system to be in equilibrium it has have maximal entropy. This
is basically a probability statement. However, this is true only in the limit of
infinite number of degrees of freedom. A finite case has non-zero probability
to fluctuation out of the equilibrium. For the equilibrium to be stable, the
changes invoked by the fluctuation need to produce a response that drives the
system back to the equilibrium state. This requirement restrict many important
properties of the system, let us investigate them
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Consider the system to be split into two parts, A,B, all of the extensive
quantities are split as V = VA + VB and so on for U, S,N . Change in the
entropy in the first order is

∆ST =
(
β0
A − β0

B

)
∆UA +

(
P 0
Aβ

0
A − P 0

Bβ
0
B

)
∆V −

(
µ0
j,Aβ

0
A − µ0

j,Bβ
0
B

)
∆j,A + ...

(78)
as the energy is always allowed to flow we have β0

A = β0
B , the temperature

of both parts of the system need to be the same – entire system has a single
energy – the first important consequence of equilibrium stability. If mechanical
exchange is allowed as well, the system has to have a single equilibrium pressure.
If particles can move between the subsystems, the chemical potentials has to be
equal.

One can go one order further. For them to be strictly negative one needs to
require that (assume a single particle PVT system)

CV,N ≥ 0, κT,N = − 1

V

(
∂V

∂P

)
T,N

≥ 0. (79)

These are examples of Le Chatelier principle: If a system is in stable equilib-
rium, the any spontaneous change in its parameters must bring about processes
which tend to restore the system to equilibrium. For example, when we add
some heat, the temperature of the heated subsystem has to increase so the heat
moves to other parts. Or when we increase the volume, the pressure decreases
so neighbouring subsystems counteract the change.

Recall that response functions are related to potentials. Therefore, the equi-
librium condition teaches us something about (some of) them as well. The
Helmholtz free energy is a concave function of temperature and a convex func-
tion of volume. The Gibbs free energy is a concave function of temperature and
a concave function of pressure.

2.2 Throttling, osmotic pressure and chemical batteries

References: Reichl 3.8 - 3.11
The (pedagogical) problem with thermodynamic potentials is that they all

look sort of the same: we fix something, does not fix something else and get
some relations. To fight this problem we will have a look at three situations
physics of which are greatly enlightened by thermodynamic potentials.

2.2.1 Throttling

Imagine a volume of gas separated by a movable porous (but thermally isolat-
ing) wall. Porous means particles can move through but the pressure does not
equalize. Let denote the volumes and pressures in two parts as VA, VB and
PA, PB . As we move the wall, VA goes from V to 0 and vice versa for VB . Each
part is connected to a reservoir so the pressure is held fixed.

Which of the potentials is relevant for this situation? The system under
consideration is thermally isolated but mechanically coupled (work can be done
by moving something), so the potential to consider is the enthalpy. Note that

20

samuel
Highlight

samuel
Highlight



during the process

∆W =

Vf∫
0

PfdV +

0∫
Vi

PidV = PfVf − PiVi = −∆U (80)

since δQ = 0. Therefore we have

Hi = Ui + PiVi = Uf + PfVf = Hf , (81)

e.g. the enthalpy is constant during the process. Recall that H = H(S, Y,Nj).
If dN = 0 then

dH = TdS + V dP = 0. (82)

Note that dS =
(
∂S
∂T

)
P
dT+

(
∂S
∂P

)
P
dP and we have CP = T

(
∂S
∂T

)
P

. Together
we have

CP dT +

(
V − T

(
∂V

∂T

)
P

)
dP = 0 (83)

where we have used the Maxwell relation
(
∂S
∂P

)
P

= −
(
∂V
∂T

)
P

.

µJT =

(
∂T

∂P

)
H

=
1

CP

(
T

(
∂V

∂T

)
P

− V
)
. (84)

Here, µJT is called the Joule-Thomson coefficient that relates changes in temper-
ature due to change in a pressure dT = µJT dP . Why is it important? Imagine a
long pipeline separated by a vent with different pressures on each side. Passing
through the vent changes the temperature of the gas!

For ideal gas we have µJT = 0, but for more realistic van der Waals gas

(
(
P + a n

2

V 2

)
(V − nb) = nRT ) we have (in the low density limit)

µJT ≈
2

5R

(
2a

RT
− b
)

(85)

where a, b are parameters of van der Waals gas and R is the ideal gas con-
stant. Note that the sign of µJT can change with temperature. This effect
works for both gases and liquids.

2.2.2 Osmosis

Submerge a hollow cylinder with only-water-permeable membrane into a water
bath. Now put sugary water into the cylinder. What happens? The height of
(sugary) water increases by h. Why does this happen? Because of osmosis. As
a result, there is a pressure difference π = ρshg across the membrane. How can
we obtain π?

Differential of the Gibbs free energy G(P, T,Nw, Ns) can be written as

dG = −SdT + V dP + µwdnw + µsdns (86)

where n are number of moles of either water or sugar. It is sometimes preferred
to work with molar observables. It is useful to define x = xs + xw where

xw =
nw

nw + ns
(87)

xs =
ns

nw + ns
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The equilibrium is reached when

µ0
w(P0, T ) = µw (P, T, xs) , (88)

where P = P0 + π. There is a model for G that describes well the solution
for ns � nw

G(P, T, ns, nw) = nwµ
0
w(P, T )+nsµ

0
s(P, T )−λnsnw

n
+nwRT log xw+nsRT log xs.

(89)
The middle term is due to interaction between water and sugar molecules. The
last two terms are contributions due to mixing. Where do the log come from?
They are from the Boltzman factor. A change in concentration is related to the
change in energy ∆ε by x = e−∆ε/kBT . We are interested in the energy here so
we take log of this equation. From this we have

µw(P, T, xs) =

(
∂G

∂nw

)
P,T,ns

≈ µ0
w(P, T )− xsRT =

!
= µ0

w(P0, T ) (90)

Now we have two expressions for µw, one at P and the other at P0. As water is
incompressible, the difference is small and their difference will be proportional
to P − P0 = π. The constant of proportionality is(

∂µ0
w

∂P

)
T,nw

=

(
∂V0

∂nw

)
T,P

= ν0
w, (91)

where ν0
w = V 0/nW is the partial molar volume. And yes, we have used

Maxwell relation, glad that you ask. Plugging the relations for µ0
w(P0, T ) and

µw(P, T, xs) into the equilibrium condition we get

π ≈ nsRT

V
. (92)

That looks pretty much like the ideal gas law!
Further reading: https://arxiv.org/pdf/1409.3985.pdf

2.2.3 Electrolytes and batteries

Not part of the lectures.
Electrolytes are substances that ionize in certain solvents. The solution therefore
consists of electrically charged particles. Why is it important? We have to take
electric interaction into account as there might be charge-dependent energy
needed to add/remove the particle

µej = µj + zjΦF, (93)

where F is the amount of charge in one mole of protons (called a Faraday,
1F

.
= 96.49C/mol). The solute (for example salt) splits into νc cations and νa

anions with corresponding charges zc and za, so we have νaza+νczc = 0 as long
as the whole solution remains electrically neutral. The equilibrium is reached
when

µac = νaµa + νcµc. (94)

It is very difficult to obtain µac, but experimental data suggest
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µac(P, T, xac) = µ0
ac(P, T ) +RT logαac, (95)

where αac is called the activity and µ0
ac is the chemical potential of the salt in

aqueous solution at temperature T and pressure P in the infinite dilution limit
(energy needed to add one salt particle to pure water). The activity can be
related to activity of ions as

log (αac) = νa lnαa + νc lnαc. (96)

In some cases (called ideal solutions) the activity is the concentration α ≈ c
(mol/volume), giving the equilibrium condition

µej = µ0
j (P, T ) +RT log cj + zjFΦ. (97)

The setting for a simple battery goes like this. We have two metals sub-
merged in solutions of their corresponding salts (for example silver electrode
submerged in a dilute solution of AGNO3. The metals are connected by a wire
with a volt-meter and the solutions are connected by salt-bridge (potentials in
solutions can equate). There are four different potentials, one for each metal
and one for each solution.

The silver ions can move to the electrode (leading to positive holes) or it
can dissolve and leave and leave excess electrons behind (recall that AGNO3

dissociates into Ag+ and NO−3 ).
We therefore have two equilibrium conditions

µ0,1

Ag+(s) + zFΦ1 = µ0
Ag+(l) +RT ln c1 + zFφ1 (98)

µ0,2

Ag+(s) + zFΦ2 = µ0
Ag+(l) +RT ln c2 + zFφ2 (99)

Salt bridge makes φ1 = φ2. Also, µ0,1

Ag+ = µ0,2

Ag+ as they are both silver. We

can now subtract the equations to get

Φ1 − Φ2 =
RT

zF
ln

(
c1
c2

)
, (100)

which is called the Nernst equation.

3 Phase transitions (2)

References: Reichl 4.1 – 4.3, 4.5, 4.6.1 and Tong 5.1.3

3.1 Thermodynamical phase transitions

3.1.1 Classification of phase transitions

Recall the Gibbs phase rule. For two phases to coexist, the corresponding chem-
ical potentials has to be equal µI(Y, T ) = µII(Y, T ) which limits the number of
independent degrees of freedom. In general, consider n types of molecules in f
possible phases. For each phase we have n− 1 independent concentrations plus
two thermodynamical quantities Y, T , therefore

#d.o.f. = 2 + f(n− 1). (101)
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For each phase boundary we have n restrictions due to chemical potentials,
which gives

#n.o.r. = n(f − 1). (102)

Subtracting the number of restrictions from the number of degrees of freedom
we obtain

v = 2 + n− f (103)

independent quantities. This for example tells us that for a single type system
(n = 1) we can have coexistence of 3 phases at most.

The system with various component has Gibbs free energy of the form
G(Y, T, xj) (xj is the relative concentration. For processes at constant Y, T
its change is given by

dGY,T = µjdnj . (104)

We know that across the phase transition the chemical potential µj =
(
∂G
∂nj

)
has to be equal. However, the other two quantities

X = −
(
∂G

∂P

)
T,nj

(105)

S = −
(
∂G

∂T

)
Y,nj

are unrestricted. In principle, either them or their derivatives can be discon-
tinuous which can be used to classify the order of phase transition. The old
way (by Ehrenfest) was to define the order of transition by the first discontin-
uous derivative. So for example if there is a discontinuity in the first derivative
and therefore ∆S 6= 0 and ∆V 6= 0 the transition would be called first-order.
The modern classification takes first order transition to be one with latent heat
∆H = T∆S and higher-order transitions are called continuous.

3.1.2 Van der Waals gas

The chemical potential conditions gives us the coexistence curves defined by the
Clausius-Clapeyron equation. Good example of phase transition is that of water
analyzed by the means of the van der Waals equation. The crucial point was
the Maxwell construction which followed from requirement of constant Gibbs
free energy across the transition.

The equation of state for van den Waals gas is

p =
kbT

v − b
− a

v2
, (106)

where v = V/N and a, b are factors due to interaction and non-zero particle
size. At the critical point we have pc(v − vc)3 = 0 which gives

kBTc =
8a

27b
, vc = 3b, pc =

a

27b2
. (107)

In physics we like to find that one system behaves in a similar way than some-
thing completely different – we like to search for universal behaviour. To do so,
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one needs to move to a universal/reduces variables which are in this case given
by

T̄ = T/Tc, v̄ = v/vc, p̄ = p/pc. (108)

This turns the vdW equation into the following form

p̄ =
8

3

T̄

v̄ − 1/3
− 3

v̄2
, (109)

this now works for any gas. However, there are some limitations, our model
is still a bit oversimplifying, the constant pcvc/(kbTc) = 3/8 = 0.375 is not
matched perfectly by experiments (results in 0.28 − 0.3 range). On the other
hand, even if not perfect, the statement is very strong (and to a very good
degree confirmed by experiments): all fluids described by their reduced quanti-
ties behave (nearly) the same. This is know as the law of corresponding states.
Universality, here we come!

Universality: Universality is a topic that is often overlooked during lec-
tures. The name is rather self-explanatory, but since it is such an important
concept not only in physics, let us pause a moment to discuss it. We have seen a
universal law before: the central limit theorem. No matter how are some quan-
tities distributed statistically (as long as they are not correlated and there are
enough of them), their mean is distributed normally. We have proved that it has
to be so. There are other famous statistical rules of this type, for example the
Benford law (statistics of digits in numbers) or the Zipf’s law (rank-frequency
distribution). While with the first one it is sort-of well understood why it works,
not so much for the other one! This is the universality: the same law describing
absolutely different things.

Let us have a look at the Zipf’s law. To begin, make a sorted list of fre-
quencies, for example the list of words in a language sorted by the frequency.
The law says that the rankings of two different items on the list and their cor-

responding frequencies are in a fixed ration: rankA
rankB

=
(

freqA
freqB

)r
, so for example

(r = 1) the second most frequent number appears in a language half as often
as the first one. But that is not all! Ration of frequencies of the first and the
second is the same as the hundredth and two-hundredth word! In principle the
value of r can be different for different systems, dividing them into something
called universality class.

We have a similar thing in physics. You can have two different systems,
for example a hexagonal spin lattice and rectangular lattice with (un)activeted
bonds. However, when close to ordered/disordered phase transitions cluster will
form. The structure of cluster is the same across all scales and also the same
for both systems. Actually phase transitions of physical systems breaks into a
number of universality classes. (We will see shortly how to do the classification.)

The universality doesn’t stop here! There seems to be a similarity between
the behaviour of nuclear resonances, random matrices and prime numbers! That
doesn’t mean that they are deeply interconnected in a sense that when a neutron
tries to penetrate a nucleus it has to consider all possible prime numbers. How-
ever, we have to admit that in many cases the reason why universality appears
is not clear. This topic is still being thoroughly researched.

(Non-technical article on this subject by Terence Tao: https://terrytao.

wordpress.com/2010/09/14/a-second-draft-of-a-non-technical-article-on-universality/).
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3.1.3 Critical exponents

To compare transitions of various type a valuable thing to compare is how
do various quantities change when the critical temperature is approached, for
example, how does vgas−vliquid change w.r.t. to Tc−T? The formal definition of
a critical coefficient is that if we express the quantity f as a function of ε = (T −
Tc)/Tc it can be expanded, near the critical point, as f(ε) = Aeλ (1 +Bεy + ...).
Here the critical coefficient λ is

λ = lim
ε→0

ln f(ε)

ln ε
. (110)

From reduced vdW equation we get

T̄ ≈ 1− 1

16
(v̄gas − v̄liquid)2

(111)

which gives us
δv̄ ∼ (Tc − T )

1
2 (112)

Similarly we have
p− pc ∼ (v − vc)3. (113)

Another important factor is the compressibility

κ = −1

v

(
∂v

∂p

)
T

∼ (T − Tc)−1 (114)

The critical coefficients/exponents have canonical names, in this case δv̄ ∼ εβ),
κ ∼ ε−γ and δp̄ ∼ εδ. Where is α? Usually in the definition of specific heat
CV ∼ εα.

Again, vdW equation gives fine but far from perfect prediction for experi-
mental results ((0.5,−1, 3) versus (0.32, 1.2, 4.8) for (β, γ, δ).

By the way, we are used to the fact that the fluctuations are mild, ∆N/N ∼
1/
√
N . However, the grand canonical partition function can be written as

logZ = βV p(T, µ) and the average particle number is

〈N〉 = V

(
∂p

∂µ

)
T,V

(115)

and

∆N2 = T

(
∂〈N〉
∂µ

)
T,V

(116)

by dividing those we get

∆N2/N =
1

V β

(
∂〈N〉
∂p

)
T,V

(117)

which by using the relation for partial derivatives (∂x/∂y)z(∂y/∂z)x(∂z/∂x)y =
−1 gives

∆N2/N = − 1

β

(
∂〈N〉
∂V

)
p,T

1

V

(
∂V

∂p

)
N,T

. (118)

On the l.h.s. we have the fluctuations on the r.h.s. there is the compressibil-
ity κ which as we have just found out diverges at the critical point. Therefore
fluctuations grown indefinitely there as well.
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3.1.4 Binary mixtures

Not part of the lectures.
Let us consider a mixture of two liquids, the Gibbs free energy is just

G(T, P, nj) = n1µ1 + n2µ2. (119)

We can use molar fractions xi to write the differential for molar Gibbs free
energy g = G/n as

dg = −sdT + vdP + (µ1 − µ2) dx1. (120)

Using the stability condition
(
∂µ1

∂n1

)
P,T,n2

> 0 we can also show that g(T, P, x1)

has to be a convex function of the mole fraction.
What are the equilibrium conditions? The chemical potentials µi =

(
∂g
∂ni

)
P,T,nj 6=i

for each particle type has to be equal in each of the phases

gI + (1− xI1)

(
∂g

∂x1

)I
P,T

= gII + (1− xII1 )

(
∂g

∂x1

)II
P,T

(121)

gI − xI1
(
∂g

∂x2

)I
P,T

= gII − xII1
(
∂g

∂x2

)II
P,T

combing these equations gives us

(
∂g

∂x1

)I
P,T

=

(
∂g

∂x1

)II
P,T

(122)

gI − gII = (xI1 − xII1 )

(
∂g

∂x1

)I
P,T

This tells us that at the equilibrium points g has the same points and there
is tangent connecting those two points.

3.2 (Ginzburg-)Landau theory

References: Reichl 4.8, Tong 5.4
To study phase transition we want to identify an order parameter η. It

can be, for example, the net magnetisation or the difference of the densities
(liquid/gas transition). The discussion still can be very general.

The free energy φ is a function of T, Y andf , where f is a force conjugate to
the order parameter

φ(T, Y, f) = φ0(T, Y ) + α2(T, Y )η2 + α3(T, Y )η3 + ...− fη. (123)

Above the transition point we have 〈η〉 = 0 so there can be no linear term.
There are two important classes, depending on whether α3 is present or not.
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3.2.1 Continuous phase transition

In this case α3 = 0. Also, let us turn off the external force, f = 0. The question
is, what value of η does minimise the free energy? Let us assume α4 > 0. If
also α2 > 0 then the potential has a minimum at η = 0. However, if α2 < 0 the
minimum is at η 6= 0. Therefore, the critical point is at

α2(T, Y ) = 0. (124)

Close to the critical point we can write α2 = α0(T − Tc(Y )), where α0 is
slowly varying function of T . There can be two equal minima, in this case the
system chose one randomly (spontaneous symmetry breaking).

Minima of the order parameter are

η = 0, T > Tc (125)

η = ±
√

α0

2α4
(Tc − T ), T < Tc.

Plugging this back to the expression for φ we get that φ is equal to

φ(T, Y, η) = φ0(T, Y ), T > Tc (126)

φ(T, Y, η) = φ0(T, Y )− (α2
0(Tc − T ))2

4α4
, T < Tc.

Therefore there is no jump in the energy but there is in the specific heat

cy = −T
(
∂2φ
∂T 2

)
Y

cY (T−c )− cY (T+
c ) =

Tcα
2
0

2α4
. (127)

If we turned on the force f this behaviour would change, continuous phase
transition is destroyed. The equilibrium state is now give by

2α2η + 4α4η
3 − f = 0. (128)

We can define the susceptibility

χ(f) =

(
∂η

∂f

)
T,Y

=
1

2α2 + 12α4η2
. (129)

In the limit of f → 0 we have discontinuity in the (diverging) susceptibility

χ(f) = lim
f→0

(
∂η

∂f

)
T,Y

=
1

2α0(T − Tc)
, T > Tc (130)

χ(f) = lim
f→0

(
∂η

∂f

)
T,Y

=
1

4α0(Tc − T )
, T > Tc
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3.2.2 First-order transition

Now let us take α3 6= 0. The potential now has two minima

η = 0 and η = (−3α2 ±
√

9α2
3 − 32α2α4)/8α4. (131)

When 9α2
3−32α2α4 > 0 there are two minima, but the system prefers the lower

one. Therefore, the transition happens at the point where the Gibbs free energy
at the displaced minimum is the same as the one at the origin. By the way, for
a finite size system the upper vacuum the system can move between two vacua.
Minimum of a potential that is not the global minimum is called a false vacuum.

3.2.3 Magnetisation and superconductors

Magnetisation
Let us have a look at an example – a model of magnetization:

Φ(T,H) = φ0(T )−M ·H + α2M
2 + α4M

4 + ... (132)

When we turn of the magnetic field H, the magnetization M = 0 above the
critical point (called Curie temperature) and M = ±

√
(α0/2α4)(Tc − T )eM

below it. The specific heat curve (for Nickel for example) resembles the letter
λ and therefore it is called the λ-curve, how clever!
Superconductors
So far we have been a little bit too oversimplifying (but glad it was working).
One imporant problem: we assumed that fluctuations are not present, all physics
are described by a single quantity η. However, as noted in the case of vdW
equation, fluctuation tend to be infinite at the critical point. Some people call
what have discussed so far only Landau theory and Ginzburg-Landau theory is
the theory enhanced by fluctuations. We will not do this here, we will investigate
fluctuations later in this course. At this moment, we will have a peak through
the model of superconductors.

The condensed phase in a superconductor corresponds to a macroscopic
quantum state (wave function) Ψ, the wave function can be used as the or-
der parameter η, the free energy (per unit volume) is

Φ(r, T ) = φn(T ) + α2(T )|Ψ(r)|2 + α4(T )|Ψ(r)|4 +
1

2m
|i~∂iΨ(r)|2, (133)

a very similar model can be written for magnetization with fluctuations allowed
(actually the same, see Tong’s lecture notes).The total energy can be found by
integrating over the volume. We extremise by requiring

∫
δ(Φ)dr = 0 (take

Ψ∗ → Ψ∗ + δΨ∗ and require vanishing linear contribution) which gives us

α2Ψ + 2α4Ψ|Ψ|2 − ~2

2m
∆Ψ(r) = 0. (134)

If we assume Ψ is real (fine as long there is no current of electron pairs) and
rescale f(z) = Ψ

√
α4/2|α2| we obtain

− ξ2(T )f ′′ − f + f3 = 0, (135)
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where ξ(T ) is the Ginzburg-Landau coherence length. We want to study spacial
variations in the solution, how does it change from f = 0 (no condensate) in one
region to f = 1 (condensate) in another. We will assume f(z) = 0 for z ≤ 0 and
f(∞) = 1. To solve the (135) we first multiply it by f ′, rearrange and integrate
to obtain

− ξ2(T )(f ′)2 = f2 − 1

2
f4 + c, (136)

the integration constant can be fixed to c = −1/2 by requiring f(∞) = 1
and f(∞)′ = 0. This gives

− ξ2(T )(f ′)2 =
1

2
(1− f2)2, (137)

which is solved by f(z) = tanh(z/
√

2ξ). Near the critical point, ξ becomes
large – and with it the fluctuations.

3.2.4 Hagedorn phase transition

http://cds.cern.ch/record/706020/files/0401103.pdf and https://cerncourier.

com/a/the-tale-of-the-hagedorn-temperature/.
There is an example of completely different type of phase transition. When
people investigated statistics of particle jets they realised then the number of
possible states grows with the energy of the system. A simple toy model is called
the ’partitions thermodynamics’. Energy of the system is E = E0n where n is
an integer and the degeneracy of each state is 2n. The basic idea is that the
total energy of the system can be split/partitioned between different elements
in p(n) ways. For example, energy of 3E0 can be used to create 3 particles of
energy E0, or 1 particle of energy 3E0 and so on. This mimics energies of the
integer tower of particle resonances. We can generalise this by either forbidding
some partitions or adding more degrees of freedom, so p(n) = κn. The partition
sum can be computed to be

Z = κneβE0n =
κ

κ− eβE0
(138)

which diverges at TH = E0

lnκ which is called the Hagedorn temperature. At
this temperature, adding more energy to the system does not increase average
energy per particles but adds a new particle instead. Another point of view is
that at this critical temperature the combinatorial factor is able to counter-act
the Boltzman exponential factor and yield the partition function divergent.

4 Equilibrium statistical mechanics (8)

4.1 Canonical Ensemble, Debye solid

References: Reichl 5.1-5.3, 5.5

4.1.1 Microcanonical ensable

Let us start with the density operator ρ̂. What can we tell about the equilibrium
state of an isolated system? The density operator has to commute with the
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Hamiltonian Ĥ, therefore ρ̂(Ĥ). The Hilbert space of states with energy E is
|E,n〉, where n = 1, ..., N(E); N(E) is the number of states with given energy.
Probability to find system in a given state (one of many with the energy) is

Pn = 〈E,n|ρ̂|E,n〉. (139)

The Gibbs entropy

S = −kBTr (ρ̂ ln ρ̂) = −kB
∑
n

Pn lnPn. (140)

The question is, what distribution of probabilities (given the restriction∑
n Pn = 1 extremize the entropy. This can by obtained by the method of

Lagrange multipliers

δ

(∑
n

(α0Pn − kBPn lnPn)

)
=
∑

(α0 − kB − kB lnPn) δPn = 0, (141)

therefore Pn = exp(α0/kB − 1) = const.. The value of α0 is obtained from
the normalisation of probabilities which gives us

Pn =
1

N(E)
, S = kB lnN(E). (142)

This is the microcanonical ensemble that holds for isolated system with fixed
energy. Next we will move to closed systems (fixed number of particles but can
exchange energy) and open systems (even particles can be exchanged).

4.1.2 Canonical ensemble

Now the energy is not fixed, but instead

〈E〉 = TrN

(
ĤN ρ̂

)
, (143)

the subscript N reminds us that we trace only over states with fixed number of
particles N . Now we can do the same exercise as with microcanonical ensemble
but with additional condition (143), yielding

ρ̂ = exp

(
(α0/kB) Î +

αE
kB

ĤN

)
. (144)

which again can be fixed by the conditions.

(α0 − kB) Î + αEĤN − kB ln ρ̂ = 0. (145)

Fixing α0 is done by defining the partition function

Z = exp

(
1− α0

kB

)
= Tr

(
exp

(
αeĤN/kB

))
. (146)

Fixing αE is done by plugging the expression for α0 back into 145, multi-
plying with ρ̂ and taking the trace

31



TrN

(
(α0 − kB) ρ̂+ αEĤN ρ̂− kB ρ̂ ln ρ̂

)
= −kB lnZ + αE〈E〉+ S = 0. (147)

Now recall that A = U −ST where U = 〈E〉. Now this looks the same if we
identify αE = −β = −1/T and take

A = −kBT lnZ. (148)

The partition function takes the form

Z = e−βA = TrN

(
e−βĤ

)
(149)

and the density operator is

ρ̂ = e−β(Ĥ−A) =
e−βĤN

TrN

(
e−βĤN

) . (150)

4.1.3 Energy fluctuations

We are starting to see some connections with thermodynamics. Let us follow
through, we can differentiate the normalisation condition Tr expβ(A− Ĥ) = 1
twice w.r.t. β to obtain

Tr

((
∂2βA

∂β2
+

(
−ĤN +

(
∂βA

∂β

))2
)
eβ(A−Ĥ)

)
(151)

or simply

〈E2〉 − 〈E〉2 = −
(
∂2βA

∂β2

)
X,N

= kBT
2CX,N . (152)

The fluctuations in energy are related to the specific heat! Also, since 〈E〉 ∼
N ∼ CX,N we get that √

〈E2〉 − 〈E〉2
〈E〉

∼ N− 1
2 . (153)

4.1.4 Semiclassical ideal gas

Imagine N indistinguishable particles, the trace is over all states

|k1, k2, ..., kM 〉± =
∑
P

(±1)
P |k1, k2, ..., kM 〉 (154)

where we sum over all N ! permutations and (−1) is a factor depending on
the corresponding statistics.

Let us consider only a single particle confined in a box with volume V = L3.
The momentum eigenvalues are k = 2πn

L . The partition function becomes

Z1(T ) =
∑
n

exp

(
−β 4π2~2

2mL2
n2

)
, (155)
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which assuming the volume is large enough can be replaced by integration over
p = 2πn

L , yielding

Z1(T ) =
V

Λ3
T

, (156)

where ΛT = h√
2πmkBT

is called the thermal wavelength. IF we add second

particle, the result is

Z2 =
1

2!
Z2

1

(
1±O(Λ3/V )

)
(157)

in the high temperature/law density limit is just the same as for set of indepen-
dent particles. In the same limit, N particles have the partition function

ZN ≈
1

N !

(
V

Λ3
T

)
≈
(
eV

Nλ3
T

)
, (158)

where we have used the Stirling’s approximationN ! ≈ (N/e)N . The Helmholtz
free energy is

A = −kBT lnZN = −NkBT −NkBT ln

(
V

N

(
h2

2πmkBT

)−3/2
)

(159)

and the entropy is

S = −
(
∂A

∂T

)
=

5

2
NkB + nkB ln

(
V

N

(
~2

2πmkbT

)−3/2
)
, (160)

whick is the Sackur-Tetrode equation.

4.1.5 Debye lattice

Some addition notes https://users.aber.ac.uk/ruw/teach/334/heatcap.

php

A simple model of atomic crystals has the Hamiltonian

Ĥ =

3N∑
i=1

p̂2
i

2m
+

N(N−1)/2∑
(i,j)

κi,j q̂iq̂j =

3N∑
α=1

(
Pα
2m

+
mω2

α

2
Q̂2
α

)
(161)

where we have used the canonical transformation. This is now an oscillator
problem with

ω2
α = c2

((
πlxα
Lx

)2

+

(
πlyα
Ly

)2

+

(
πlzα
Lz

)2
)

(162)

and the Hamiltonian

Ĥ =

3N∑
α=1

~ωα
(
n̂α +

1

2

)
(163)

then the partition function is
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ZN =
∑
n1

...
∑
n3N

exp−β

(
3N∑
α=1

~ωα
(
n̂α +

1

2

))
. (164)

The average energy is

〈E〉 =

3N∑
α=1

(
~ωα

2
+

~ωα
eβ~ωα − 1

)
. (165)

Note that the average occupation numer 〈n̂α〉 = 1
eβ~ωα−1

is the Planck’s formula.
By figuring out ω we can match this versus the experiment (for example measure
CV ) and the results agree very well (better than the Einstein solid model).

Exercise: Compute heat capacity of Debye solid.

4.2 Spin lattices

References: Reichl 5.6.1,5.6.2, Tong 5.2
The spin lattice is one of the most physical systems to understand as it is

clear to understand and demonstrate a plethora of important properties and
effects. 1D model is easy to solve but has no phase transition. 2D model has a
phase transition, is exactly solvable but the solution is complicated (first done
by Onsager).

To begin with, consider a single spin to begin with. It can occupy two
different states s = ±1 with corresponding energies E = ∓µBs. The partition
function is

Z1 =
∑
i=1,2

exp (βµBs) = 2 cosh(βµB). (166)

This was rather simple! If we had N independent spins it is easy to see that
ZN = ZN1 . We can now consider a 1D system of interacting spins. The easiest
form of interaction is ’nearest-neighbour’ that means that each spin only feels
the one next to it, energy of the system has the form

E = ε
∑
(i,j)

sisj − µB
∑
i

si. (167)

What will the system look like? For large β, energy is preferred and all
spins will be aligned (to minimise interaction energy) and pointing down (to
minimise energy from the magnetic field). In small β limit, energy does not
matter so much and the system tends to extremise the entropy (recall the free
energy F = U − TS.

Before solving the problem in 1D, let us just define the magnetisation as

m =
1

N

∑
i

〈si〉 =
1

Nβ

∂ lnZ

∂B
. (168)

Also note that one can think of the Ising model as a gas particles living on
lattice with occupation numbers ni = 0, 1 and energy E = −4J

∑
ninj−µ

∑
ni

where the first term is due to attraction. This is identical to the Ising model if
we take si = 2ni − 1. This may be useful in thinking about the problem.

Our goal is now to find the partition function Z by summing over all 2N

spin configurations with energy (167).
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4.2.1 Transfer matrix method

(Also solved here https://stanford.edu/~jeffjar/statmech/lec4.html#solving1)

Exercise: Compute critical coefficients of 1D Ising model. We will consider
a system with periodic boundary conditions (that is the chain is living on a
circle). Let us begin with rewriting the partition function as

Z =
∑
s1

...
∑
sN

exp

(
β
∑
i

(
εsisi+1 +

1

2
µβ (si + si+1)

))
(169)

Let us now define the matrix

P =

(
eβ(ε+µB) e−βε

e−βε eβ(ε−µB)

)
(170)

defined as

〈si|P |si+1〉 = eβ(εsisi+1+ 1
2µB(si+si+1)) (171)

Now, we are nearly done!

Z =
∑
s1

...
∑
sN

〈s1|P |s2〉〈s2|P |s3〉... (172)

=
∑
s1

〈s1|PN |s1〉 = TrPN = λN+ + λN− ,

where

λ± = eβε
(

cosh(βµB)±
√

cosh2(βµB)− 2e−2βε sinh(2βε)

)
. (173)

In the N →∞ limit only the larger eigenvalue contributes therefore we have
the Gibbs free energy per site is g(T,B) = −kBT lnλ+ and the order parameter
(the magnetisation) is

〈s〉 = − ∂g

∂µB
=

sinh(βµB)√
cosh2(βµB)− 2e−2βε sinh(βµB)

(174)

There is no phase transition as the magnetisation always disappear in the
B → 0 limit.

4.2.2 Mean field method

This method that works well for number of dimensions higher than 4. The idea
is that in calculation of energy for each of the spins we take the value of all other
spins to be the same as the mean value of spin. This simplifies the calculation
(each spin is independent in the calculation) which we can use to compute the
average value of spin (that in fact depends on itself). The result is obtained by
the condition of self/consistency.

The Hamiltonian is taken to be
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Ĥ = −
∑
i

E(ε,B)si, (175)

where E(ε,B) = 1
2νε〈s〉+ µB. Now the partition functions simply is

ZN = (2 cosh(βE))
N

(176)

The average spin is

〈s〉 = Z−1
∑
si

sie
βEsi = tanh (βE) = tanh

(
β

(
1

2
νε〈s〉+ µB

))
(177)

This equation can be ”solved” graphically for B = 0. The critical point is where
the slopes of both curves match at 〈s〉 = 0. This gives the critical temperature
as

Tc =
νε

2kB
. (178)

For B 6= 0 there is no phase transition and with increasing temperature the
average spin value goes smoothly to zero.

4.3 Scaling and renormalisation

References: Reichl 5.7, 5.8.1

4.3.1 Homogeneous functions and widom scaling

Function is called homogeneous if it satisfies satisfy

F (λx) = g(λ)F (x). (179)

It can be shown that the only possible form is a power law F (x) = F (1)xp. If
such function depends on two variables

f(λp, λq) = λf(x, y) (180)

we can turn it into the form f(x, y) = y1/qf
(
x/yp/q, 1

)
.

The idea behind Widom scaling is that the free energy can be split into two
parts: regular and singular w.r.t. to the critical point

g(ε,B) = gr(ε,B) + gs(ε,B) (181)

where ε = (T − Tc)/Tc. We will assume that the singular part is homogeneous

gs(λ
pε, λqB) = λgs(ε,B). (182)

Now recall the definition of critical coefficients, for example near the critical
point the magnetisation goes as

M(ε,B = 0) ∼ (−ε)β . (183)

Take (182) and differentiate w.r.t. B to obtain
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λqM(λpε, λqB) = λM(ε,B) (184)

and take λ = (−ε)−1/p and set B = 0. Voilá

M(ε, 0) = (−ε)(1−q)/pM(−1, 0) (185)

and therefore β = 1−q
p . Actually, we can obtain all four critical coefficients

α, β, γ, δ using only two scaling coefficients p, q! Therefore they provide relations
between the four coefficients that match the experiment very well (even better
than the mean field calculations).

Exercise: Compute rest of the scaling coefficients.

4.3.2 Kadanoff scaling

We can now try to apply the idea of scaling to the Ising model. The Hamiltonian
is

H = −K
ΓN/2∑
(ij)

SiSj −B
N∑
i=1

Si, (186)

where Si = ±1. We will consider d−dimensional lattice and split it into blocks
of with length of edge L (chosen to have La � ξ where a is the length of the
lattice site). We have NL−d blocks, spin of each is

S′I =
∑
i∈I

Si. (187)

Since La � ξ spins in a single block are strongly correlated and therefore we
can represent them by

S′I = ZSI , (188)

where SI = ±1 and Z = Ly where y will be obtained later. The Hamiltonian
for the blocks is

H = −KL

ΓL−dN/2∑
(IJ)

SISJ −BL
NL−d∑
I=1

SI , (189)

which looks the same as before, but with a different range of summation and
parameters. The free energy therefore the free energy has to have the form

g(εL, BL) = Ldg(ε,B). (190)

After such transformation the correlation length changes as ξL(εL, BL) = L−1ξ(ε,B).
Therefore, the critical temperature and magnetisation have to change as well.
Let us assume εL = εLx. Also

B

N∑
i=1

Si = B

NL−d∑
I=1

∑
i∈I

Si = B

NL−d∑
I=1

S′I = BZ

NL−d∑
I=1

SI , (191)

therefore BL = BZ = LyB. The scaling equation therefore is
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g(Lxε, LyB) = Ldg(ε,B) (192)

which, comparing to Widom scaling, gives x = pd and y = qd (from which we
see that q < 1).

This again allows us to related different scaling coefficients.

4.3.3 Renormalisation

Important, yet maybe unnoticed, idea of the previous section is that physics of
the system as viewed on different scales can be related together. The special
case is the critical point, where the self-similar behaviour of the system becomes
manifest. The important aspect is how are the coupling coefficients on different
scales related to each other. We will try to keep the discussion rather general.
Consider the partition function

Z(K, N) =
∑
Si

exp (−H(K, Si, N)) . (193)

The effective Hamiltonian (with β included)

(K, Si, N) = K0 +K1

∑
i

Si +K2

∑
ij

SiSj +K3

∑
ijk

SiSjSk + ... (194)

where K is a vector of coupling constants, for example in the case of the Ising
model it is K = (0,−βB,−βJ, 0, 0, ....). Now we again split the system into SI
blocks (that has spins σI inside)

Z(K, N) =
∑
SI ,σI

exp (−H(K, SI , σI , N)) =
∑
SI

exp (−H(K, SI , N)) = Z(KL, NL
−d)

(195)
The coupling coefficients are related by a transformation

KL = T (K). (196)

This transformation is generates the renormalisation group. Usually this
drives us away from the critical point. But if we are sitting on the critical point
we have

K∗ = T (K∗). (197)

Let us now simplify the discussion and assume only two non-zero coefficients
K∗ = (K∗1 ,K

∗
2 ). The transformation T moves the points in 2D space and we

are interested how does it move points close to the critical point. Therefore we
will consider the distance from it δKL = (KL −K∗), linearised transformation
is

δKL = AδK, (198)

the matrix A can be diagonalised δuL = Λδu. The transformation acts on
the eigenvectors as
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δunL,1 = λn1 δu1, (199)

δunL,2 = λn2 δu2.

If λ < 1 the point flows toward the critical point, if λ > 1 it flows away. The
eigencurves with λ < 1 will become critical after sufficient number of transfor-
mations, such system is said to exhibit ”universality”. The eigenvalue λ > 1 is
called relevant and its eigenvector is identified as a physical quantity (ε or B
for example) that measures the distance of the system from the critical point.

Now the singular part of the free energy density can be written as

gs(δu) = L−dgs(λiδui) (200)

this looks like the Widom scaling! For Ising system we expect two relevant
parameters and therefore two constants λ1,2 > 1. Those can be observed to be
δu1 = ε and δu2 = B. Therefore,

λ1 = (Ld)p → p =
lnλ1

d lnL
(201)

λ2 = (Ld)q → q =
lnλ1

d lnL
.

Therefore we have related the critical exponents to the relevant eigenvalues.

4.4 Numerical solutions, Metropolis algorithm

Some textbooks https://link.springer.com/content/pdf/10.1007%2Fb100712.
pdf This one is rather useful for high-energy physics https://arxiv.org/abs/
1808.08490.

4.4.1 Importance sampling

We have studied various neat tricks and approaches to study the Ising model in
various number of dimensions. In general, we relied (often implicitly) on some
nice properties of the model. Analytical solution often work under restrictive
assumptions and therefore might not describe the real situation properly. You
may wonder: why bother? We know the expression for Z, why do not we
just compute it directly? The problem is obvious, there are way too many
configurations, 2N in the case of the Ising model (just remember that 210 ≈ 103).

However, consider the following challenge: sum this list of numbers within
1% precision:

S = 5.18471× 1021 + 1.06865× 1013 + 1.06865× 1013

+22026.5 + 1.06865× 1013 + 22026.5 + 22026.5 + 0.0000453999

+1.06865× 1013 + 22026.5 + 22026.5 + 0.0000453999 + 22026.5

+0.0000453999 + 0.0000453999 + 9.35762× 10−14 + 1.06865× 1013

+22026.5 + 22026.5 + 0.0000453999 + 22026.5 + 0.0000453999 + 0.0000453999

+9.35762× 10−14 + 22026.5 + 0.0000453999 + 0.0000453999

+9.35762× 10−14 + 0.0000453999 + 9.35762× 10−14

+9.35762× 10−14 + 1.92875× 10−22.
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Easy, right? The answer is just the first term S ≈ 5.18471 × 1021 (and the
precision is way better than 1%). As it happens, those numbers correspond
to the partition function of the noninteratcting Ising model with N = 5 spins
with effective coupling constant (βB) equal to 10, that is Z =

∑
si

exp (−10si).
This either means that the temperature is very low or that the coupling to the
magnetic field is very large. We can obtain the value of partition sum only by
looking at a very small (in this case one) state that dominates the summation.

The idea of importance sampling is to utilise this – can we scan the relevant
part of configuration space in an accessible way? (That is within a reasonable
amount of (computational) time?) Let us step back for a moment.

4.4.2 Monte Carlo methods

Numerical methods are computational methods that are often intended to be
run on a computer. Some are deterministic, that means every time the code
is run the same result is reached. For example, we can consider numerical
integration of a differential equations. The other approach is to include some
kind of randomness, therefore it is hard to reach the same result (unless we
use the same set of random number) but results of separate run should agree
reasonably well.

Imagine we want to compute the following integral

I =

inf∫
− inf

1

1 + x2
dx (202)

The first step is to replace the integration with a sum as computer can only
deal with discrete numbers, therefore we take x = iε and let i run over all whole
numbers. This is again problematic as computers do only have limited memory.

Therefore we can take i = −imin, ...., imax, which approximates
imaxε∫
−iminε

1
1+x2 dx.

Now there are two sources of inaccuracies that need to be tuned individually
(range of integration and integration step ε). Now we have, for example

IN =

i=104∑
i=−104

1

1 + (i/10)
2 10−1, (203)

where we took care of the fact that dx ≈ ε. The exact result is I = π, this way
we have obtained IN = 3.1395, close enough!

Now consider a fact that looks deep but is rather trivial. One can think of any
integral over finite region as computing a mean value with uniform probability,
for example

I =

L/2∫
−L/2

L

1 + x2

dx

L
=

〈
L

1 + x2

〉
uniform

. (204)

So there is another way to compute the integral.

• Generate a list of random numbers −L/2 < ri < L/2, i = 1, ..., N .
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• Compute a new list Ri = L
1+r2i

, i = 1, ..., N .

• Compute the mean value of this list I = 1
N

∑
i

Ri.

With L = 2000 and N = 105 I’ve got I = 3.143 ± 0.019. (I have ran the
simulation 100 times to compute the error estimate). This would be called the
Monte Carlo method (it is an umbrella term for various randomness-involving
methods.)

In physics we often don’t need to force the probability, it is inherently part
of the problem. We often have to compute integrals of the form

〈f〉 =

∫
f(x)p(x)dx, (205)

or their multidimensional variants.
Now we can do this numerically by changing the integral into a sum or

we can generate uniformly-distributed random numbers ri and then take mean
over the list of f(ri)p(ri)L. The factor p(ri) just acts as a weighting factor.
We could achieve the same result by generating random numbers (rp)i with the
distribution p and then compute only mean of the list f((rp)i).

How to generate numbers with given distribution? On option is to know
the inverse function p−1 and then generate random numbers 0 ≤ r ≤ 1 and
have p−1(r) with the desired distribution. However, inverting the probability
function can be difficult. However, there is another – perfectly straightforward
– way of achieving this.

4.4.3 Metropolis algorithm

The Metropolis agorithm is a simple way of obtaining a list of random numbers
rp with that have the probability distribution of the form p(x) = Z−1e−S(x),
where S(x) is a function which we will call the action here. The algorithm starts
with a random number x1 and then goes over a loop

• store the current number xold := xi and generate a new one xnew,

• compute ∆S = S(xnew − xold),

• if δS < 0 we keep the new configurations, xi+1 = xnew and go back to (1),

• If not, we give it a chance anyway and compare e∆S with a random number
0 ≤ r ≤ 1,

• if it is larger we keep it anyway xi+1 = xnew, otherwise we restore the old
value xi+1 = xold,

• go to (1).

As a result we will obtain the list of random numbers (Markov chain) (rp)i =
{x1, ..., xn} with the desired probability distribution p. To compute 〈f〉 we just
need to take the mean of {f(x1), ...., f(xn)}.

One can think of this procedure as a walk that is partially random but
partially guided. We can interpret the action S(x) as the energy of the system.
During each loop, the system tries to move to a new position. If the energy
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goes down it can always do it. If it goes up it can do it, but larger the energy
step the smaller the probability. We can interpret it as that the system needs a
random ’kick’ from the environment and large ’kicks’ are very improbable.

We often think of the Markov chain as a temporal sequence and each step
(loop) is referred to a single unit of Monte-Carlo time.

The image of a particle moving in a potential defined by S(x) with the help
of random (temperature) impulses from the environment is helpful in seeing the
limitations of this method. Firstly, it can take some time for the system to
walk over the important part of the configuration space. Also, if two regions are
separated be either infinite or very high potential wall, it is (nearly) impossible
for the system to get there.

On the other hand, using this method, we didn’t have to specify anything
(such the integration range and so on). There are very few parameters which
need to be tuned (we often seek new states of the form xi+1 = xi + ε. Small ε
makes the walk slow, large ε makes the rejection rate high, one need to find a
balance.

The great thing is that this method works equally well (yet slower) in higher
dimensional cases and works for discrete system as well – for example the Ising
model!

4.5 Grand Canonical Ensemble

References: Reichl 6.2, 6.3, 6.5

4.5.1 Grand Canonical Ensemble

We will begin with the same exercise as before, what probability distribution
maximize the entropy given the restriction

Trρ =
TrĤρ

〈E〉
=

TrN̂ρ

〈N〉
= 1. (206)

First we have by by varying δρ the equation

(α0 − kB) + αEĤ + αN N̂ − kB ln ρ̂ = 0 (207)

Z = exp (α0/kB − 1) = Tr
(

exp
(
αEĤ/kB + αN N̂/kB

))
. (208)

From (207) by multiplying with ρ and taking trace we obtain

− kB lnZ + αE〈E〉+ αN 〈N〉+ S = 0. (209)

We can compare this with the grand potential Ω = U − TS − µN to make the
identification

Ω = −kBT lnZ (210)

and

ρ = e−β(Ĥ−µN̂−Ω) =
e−β(Ĥ−µN̂)

Tr
(
e−β(Ĥ−µN̂)

) (211)

And as before, the fluctuations can be shown to behave as

√
〈N2〉−〈N〉2
〈N〉 ∼

N−1/2.
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4.5.2 Chemical potential

Are you not perfectly happy with the notion of chemical potential? Try reading
this https://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/advanced/t2_
4_1.pdf

Important parameter that makes is the chemical potential µ. It is defined
as the energy required/obtained to/by add/removing a particle into/from the
system. How to compute it? Well, that depends on the situation. For example
in semiconductor each particle can occupy a certain energy levels and µ is the
cost to add that particle. For monatomic ideal gas we have computer the Sackur-
Tetrode molar entropy to be

S =
5

2
R+R ln

(
T 5/2

P

)
+R ln

((
2πm

h2

)3/2

k
5/2
B

)
(212)

from Gibbs-Duhem equation SdT +XdY +Njdµj = 0 we have (∂µ/∂T )P = −s
and (∂u/∂P )T = ν = RT/P . We can integrate those to obtain

µmolar = −RT ln

(
(kBT )5/2

P

(
2πm

h2

)3/2
)

(213)

Also recall that we have previous defined λT = h√
2πmkBT

.

µ = −kBT ln

(
kBT

PMλ3
T

)
. (214)

4.5.3 Ideal classical gas

Hamiltonian of a ideal gas is Ĥ0 =
N∑
j=1

~2k2
j/(2m). In the classical limit of very

low density gas (each particle occupies its own state) we have for indistinguish-
able particles

Z =
∑
N

1

N !

∑
kj

〈k1,k2, ...|e−β(Ĥ0−µN̂)|k1,k2, ...〉 (215)

=
∑
N

eβµN

N !

V N

λ3N
T

= exp

(
eβµ

V

λ3
T

)
.

The pressure is obtained directly from the Grand sum

P = −Ω

V
=
kBT lnZ

V
= kBT

eβµ

λ3
T

. (216)

The particle number can be also obtained from it as

〈N〉 = −
(
∂Ω

∂µ

)
T,V

=
V e−βµ

λ3
T

. (217)

By removing the factor V e−βµ

λ3
T

we obtain

PV = 〈N〉kBT. (218)
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4.5.4 Adsorption

Adsorption is the process when something (molecules) stick to the surface of
something else (perhaps also molecules), for example pollutants stick to the
surface of activated carbon (activated means it has a lot of pores and there-
fore large surface area). Another example is an oxygen molecule sticking to to
myoglobin or hemoglobin (the first on is in muscles the other in blood).

Myoglobin binds one oxygen molecule, hemoglobin up to four, so we will
discuss myoglobin for the sake of simplicity. Our atmosphere is 21% oxygen
so its partial pressure is PO2 = 0.21atm. When molecules join they release
energy ε (the binding energy). The system (myoglobim + atmosphere) will
be in equilibrium when their chemical potentials equal, therefore we can take

µ = −kBT ln
(
kBT
Pmλ3

T

)
.

The partition function for a system ofN distinguishable myoglobin molecules
is

Z(T, µ) =

N∑
n=0

N !

(N − n)!n!
exp (−β (−nε− nµ)) =

(
1 + eβ(ε+ν)

)N
, (219)

where we can identify the partition function for each single binding site. The
fraction of (un)occupied sites is

f0 =
1

1 + eβ(ε+µ)
, f1 =

eβ(ε+µ)

1 + eβ(ε+µ)
, (220)

which after plugging in the expression for µ we obtain

foccupied =
PO2

PO2 + kBT
λ3
T
e−ε/T

(221)

which is called the Langmuir adsorption equation (holds for general case, not
only oxygen).

Exercise: How would the possibility of adsorbing two (or four) molecules
change the result?

4.5.5 Blackbody radiation

Useful lecture on this topic https://scholar.harvard.edu/files/schwartz/

files/11-phononsphotons.pdf We can think of the blackbody radiation in
terms of grand canonical ensemble with µ = 0. The partition function is for
system in box V = L3 and photon energies ~ωi = ~c|k|i is

Z =

∞∑
n1=0

....

∞∑
n∞=0

exp

(
−β

∞∑
i=1

ni~ωi

)
=

∞∏
i=1

1

1− e−β~ωi
(222)

so the grand potential is

Ω = −PV = kBT

∞∑
i=1

ln
(
1− e−β~ωi

)
. (223)
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Note that for µ = 0 we have Ω = U − TS where S = −
(
∂Ω
∂T

)
P

so we can
write

U =

(
β∂Ω(T )

∂β

)
V

=

∞∑
i=1

~ωin (ωi) =

∞∑
i=1

~ωi
eβ~ωi − 1

(224)

The allowed frequencies in a box are ω2 = c2k2 = c2
((

nxπ
L

)2
+
(nyπ
L

)2
+
(
nzπ
L

)2)
.

We can think of states occupying a lattice with volume per point (cπ/L)3. Num-
ber of points with energy (frequency) small than some value is equal to the
volume in the phase space times the density (one eight of a sphere)

ν =
1

8

4

3
πω3

(
L

cπ

)3

=
L3ω3

6c3π2
(225)

if we assume that the lattice is dense enough and don’t forget about two possible
polarisations we can replace the sum over states with 2 times the integral to
obtain the pressure

P = −kBT
π2c3

∞∫
0

ω2dω ln
(
1− e−β~ω

)
(226)

which by integrating p.p. gives

P =
a

3
T 4, a =

π2k4
B

15c3~3
. (227)

Similarly we can find the internal energy

U =
L3

π2c3

∞∫
0

ω2dω
~ω

(eβ~ω − 1)
= aV T 4. (228)

The energy density (per volume) for each frequency component is

u(ω) =
ω2

π2c3
~ω

(eβ~ω − 1)
. (229)

4.6 Ideal Bose-Einstein quantum gases

4.6.1 Quantum gases

References: Reichl 6.6,6.7 Again, the same setting: particles in a box, now

V = LxLyLz, the wave numbers are kl =
3∑
i=1

2πli
Li

ei and p = ~k (note that

−∞ < li <∞). The energies are

εl =
~2

2m

∑
l

4π2l2i
L2
i

. (230)

It is convenient to switch to the number representation where distinction be-
tween Bose and Fermi statistics is very clear

Z(T, V ) =
∏
l

(∑
nl

)
〈{nl}|e−β(Ĥ0−µN̂)|{nl}〉 (231)
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Now we have two different cases. In case of Bose-Einstein system, any numbers
of particles can occupy the same state. In case of Fermi-Dirac statics, only one
at most. Therefore

ZBE =
∏
l

( ∞∑
nl=0

exp (−βnl(εl − µ))

)
(232)

ZFD =
∏
l

(
1∑

nl=0

exp (−βnl(εl − µ))

)

We will begin with the first one.

4.6.2 Bose Einstein gas

Recall that
∑
n
xn = (1−x)−1. In dealing with statistical sums it always useful to

keep in mind the huge list of sum identities present in mathematical literature.
This gives the partition function

Z(T, V, µ) =
∏
l

1

1− e−β(εl−µ)
(233)

and the grand potential

Ω(T, V, µ) = −kBT logZ = kBT
∑
l

ln
(

1− e−β(εl−µ)
)
. (234)

From this we can obtain the mean value of N

〈N〉 = −
(
∂Ω

∂µ

)
T,V

=
∑
l

1

eβ(εl−µ) − 1
=
∑
l

〈nl〉 (235)

where

〈nl〉 =
1

eβ(εl−µ) − 1
=

z

eβεl − z
(236)

where the quantity z = eβµ is called the fugacity. (Wiki: In chemical thermody-
namics, the fugacity of a real gas is an effective partial pressure which replaces
the mechanical partial pressure in an accurate computation of the chemical equi-
librium constant. It is equal to the pressure of an ideal gas which has the same
temperature and molar Gibbs free energy as the real gas.)

BE gas undergoes a phase transition at low temperatures, we should be able
to understand it from we know so far. From (236) we see that 0 ≤ z ≤ 1
(otherwise we could have infinite result). Therefore, µ = kBT ln(z) has to
negative. As we decrease temperature, eβε goes to infinite for all ω > 0 and
z goes to 1. However, for the state of zero energy eβε = 1 and therefore the
expected occupation number becomes macroscopically large

〈n0〉 =
z

1− z
. (237)

Now we want to compute the sums, 〈N〉 =
∑
〈n〉. The idea is as usual,

replace sums with integrals. However, we have to be careful about the zero-

energy point, we will treat it separately (
∑
→
∫
g(ε)dε, g(ε) = m3/2V ε1/2

2π2~3 ). We
will assume Lx > Ly > Lz.
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〈N〉 =
z

1− z
+

V m3/2

√
2π2~3

∞∫
4π2~2

2mL2
x

dεε1/2 z

exp(βε)− z
(238)

=
z

1− z
+

4πV

(2π~)
3

∞∫
2π~/Lx

p2dp
z

exp(βp2/(2m))− z

in a similar manner

Ω = kBT ln(1− z) +
4πV kbT

(2π~)3

∞∫
2π~/Lx

p2dp ln(1− z exp(−βp2/(2m))). (239)

Note that in the L → ∞ limit we can move the lower integration bound to
0. It is convenient to move to dimensionless variables, x2 = βp2/(2m), then

P =
−Ω

V
= −kBT

V
ln(1− z) +

kBT

λ3
T

g5/2(z) (240)

where

g5/2(z) = − 4√
π

∞∫
0

x2dx ln(1− ze−x
2

) =

∞∑
α=1

zα

α5/2
. (241)

Similarly, for the average particle density

〈n〉 =
〈N〉
V

=
1

V

z

1− z
+

1

λ3
T

g3/2(z), (242)

where

g3/2(z) =

∞∑
α=1

zα

α3/2
. (243)

We are interested in the V → ∞, z → 1 limit. In this limit we can write

z = 1 − 1/(n0V ). Two important functions in this limit are ln(1−z)
V → 0 and

1
V

z
1−z → n0. That means the contribution to the pressure can be neglected but

the one to 〈n〉 cannot.
So in the infinite volume limit

P =
kBT

λ3
T

g5/2(z) (244)

for any value of z. However, the particle density goes as

〈n〉 =

{
kBT
λ3
T
g3/2(z) for z < 1

n0 + kBT
λ3
T
g3/2(1) for z = 1

(245)

The growth of 〈n〉λ3
T is driven by the g3/2 until very close to z = 1 where

the n0 becomes dominant, this is the BE condensation.
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In the high temperature limit we can keep just a couple of few terms of
expansion of g3/2 and g5/2 as z is small to obtain

〈n〉 =
1

λ3
T

(
z +

z2

23/2
+ ...

)
(246)

P =
kBT

λ3
T

(
z +

z2

25/2
+ ...

)
we can use this to compute z(〈n〉), for example keeping only the linear term

to obtain P = 〈n〉kBT .
The order parameter for this transition is the fraction

η =
n0

〈n〉
. (247)

We can write n0 = 〈n〉− kBT
λ3
T
g5/2(1). The phase transition appears as z → 1

where we have 〈n〉λ3
Tc

= g3/2(1) were we have denoted the critical temperature

Tc. Recall that λT ∼ T−1/2. From this we have

η = 1−
g3/2(1)

〈n〉λ3
T

= 1−
(
λTc
λT

)3

= 1−
(
T

Tc

)3/2

(248)

The critical density as a function of temperature is

〈nc〉 =
1

〈vc〉
=
g3/2(1)

λ3
T

≈ 2.612

(
mkBT

2π~2

)3/2

(249)

and the other way around, the critical temperature as a function of density is

Tc =

(
2π~2

mKB

)(
〈n〉

2.612

)2/3

(250)

where have used the fact that g3/2 = ζ(3/2) which is the well-known Riemann
zeta function.

From the expression for pressure 244 we can obtain the entropy as

s = S/V = V −1

(
∂P

∂T

)
V,µ

=

{
kB

5
2λ3
T
g5/2(z)− kB〈n〉 ln z for z < 1

kB
5

2λ3
T
g5/2(1) for z = 1

(251)

To compute cn we need to use
(
∂βµ
∂T

)
n

= − 3
2T

g3/2(z)

g5/2(z) . From this we have

cn = T

(
∂s

∂T

)
n

=

{
kB

15
4λ3
T
g5/2(z)− kB〈n〉 94

g3/2(z)

g1/2(z) for z < 1

kB
15

4λ3
T
g5/2(1) for z = 1

(252)

4.7 Bogoliubov mean field theory

References: Reichl 6.8
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4.7.1 Short reminder of the scattering theory

In quantum mechanics (in c.o.m. system) the scattering Schrödinger equation
for two identical particles takes the form(

∆ + k2
)
ψk(r) =

m

~2
V (r)ψk(r). (253)

The solution is

ψk(r) = eik·r +
m

~2

∫
dr′Gk(r, r′)V (r′)ψk(r′), (254)

where Gk is the green function now in the form Gk(r, r′) = − eik|r−r′|

4π|r−r′| . The

solution is, in the asymptotic region where we can take |r−r′| ≈ r−r ·r′/r+ ....
Now we focus on case of two hard-sphere particles with radius a and energies

low enough so that the wavelength is way larger than their radius. The energy
eigenstates are a superposition of incoming and scattered waves

ψk(r) = eikz + f(θ)
eikr

r
(255)

where f(θ) is the scattering amplitude f(θ) = − m
4π~2

∫
dr′e−ik

′·rV (r′)Ψk(r′).
The boundary condition for a hard sphere is ψ(a, θ) = 0 which fixes f(θ) = −a.

Another useful potential is the contact potential V (r) = gδ(r) which gives
the scattering amplitude f(θ) = − m

4π~2 g + .... Comparing with the hard-sphere

potential we have g = 4π~2a
m . This works as a reasonably good simplification.

4.7.2 Bogoliubov mean field theory

The Hamiltonian for an interacting system takes in the number representation
the following form

Ĥ =
∑
k

~2k2

2m
â+
k âk +

1

2V

∑
k1,k2,k3,k4

〈k1,k2|V̂ |k3,k4〉â+
k1
â+
k2
âk3

â+
k4
. (256)

Where â, â+ are the usual creation/annihilation operators. In the case of
BEC we can approximate the interaction to be contact, V (r) = gδ(r) which
makes the Hamiltonian

Ĥ =
∑
k

~2k2

2m
â+
k âk +

g

2V

∑
k1,k2,k3,k4

δk1+k2−k3−k4 â
+
k1
â+
k2
âk3 â

+
k4
. (257)

This problem is difficult to solve. However, we are interested in BEC system
at very love temperatures T ≈ 0K. That means most of the particles are in
the lowest energy state. Only ∆N = N − N0 are excited. To utilise this we
will replace â0 = â+

0 =
√
N0 and keep only up to quadratic terms in âk, â

+
k for

k > 1.
This turns the Hamiltonian into
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Ĥ =
gN2

0

2V
+

1

2

∑
k 6=0

(
(εk + ν)

(
â+
k âk + â+

−kâ−k
)

+ ∆
(
â+
k â

+
−k + â−kâk

))
, (258)

where εk = ~2k2

2m , ν = 2gN0/V,∆ = gN0/V . (Recall that N0 ∼ ∆ is the

order parameter.) The particle number is N̂ = N0 +
∑
k6=0

â+
k âk.

The grand potential is

Ω = −kBT ln
(

Tr
(
e−β(K0+K̂)

))
(259)

where K0 = gN2
0 /(2V )− µN0 and

K̂ =
∑
k

(
(εk + ν − µ) â+

k âk +
∆

2

(
â+
k â

+
−k + â−kâk

))
. (260)

The usual effort is to try to diagonalize the operator, in this case this can
be done using the Bogoliubov transformation

â+
k = uk b̂

+
k − vk b̂−k (261)

where b̂, b̂+ satisfy the ordinary oscillator relations and are called bogolon cre-
ation operators (create and annihilate excitations in BEC). This is allowed only
if u2

k − v2
k = 1. After the transformation we have

K̂ =
∑
k 6=0

Ek b̂
+
k b̂k +

1

2

∑
k 6=0

(Ek − (εk + v − µ)) . (262)

where uk = 1√
2

√
εk+v−µ
Ek

+ 1, vk = 1√
2

√
εk+v−µ
Ek

− 1 and Ek =
√

(εk + v − µ)2 −∆2.

The BEC has no gap in the spectrum and for that to be true the chemical
potential has to be µ = v−∆ which makes the energy Ek =

√
(εk + ∆)2 −∆2,

also the expressions for u, v are simplified. Note that at low energies Ek ∼ k and
at high energies Ek ∼ k2 (photon-like and particle-like). The grand potential
now is

Ω = −kBT ln

(
Tr
(
e−βK0

)
Tr

(
e
−β

∑
k6=0

Ek b̂
+
k b̂k
)

Tr

(
e
−(β/2)

∑
k6=0

Ek−(εk+∆)
))

.

(263)
Now the third term on the r.h.s. is problematic (UV divergence). Is is

an artefact of our simplistic approach and would be taken care of in a proper
treatment. Here we will just remove it by hand. Therefore, the grand potential
is

Ω = −gN
2
0

2V
+ kBT

∑
k6=0

ln(1− e−βEk) (264)

And now we are ready to roll! From the grand potential we can compute
what we can possibly want to know about the system
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〈N〉 = N0 +
∑
k 6=0

εk + ∆

Ek

1

eβEk − 1

S = −kB
∑
k6=0

ln(1− eβEk) +
∑
k6=0

Ek
T

1

eβEk − 1

P =
gN2

0

2V 2
− kBT

V

∑
k6=0

ln(1− e−βEk)

CV,N =
1

kBT 2

∑
k6=0

E2
k

eβEk

(eβEk − 1)2
(265)

This can again be simplified in the small temperature limit. Recall that
∆ = (4π~2a/m)N0/V where a is the effective size (wavelength) of the particles.
It is also natural to express the wavenumber as k = κ

a where κ is dimensionless
and also to denote d = 8πa3N0/V . Using this

Ek =
~2

2ma2

√
(κ2 + d2)2 − d2 (266)

this can be expanded for κ� d as

Ek = kBTa
√

2d

(
κ+

κ3

4d
+ ...

)
(267)

where Ta = ~2

kB(2ma2) .

Now we can plug this into the expression for the specific heat and the pres-
sure. Also, the summation can be replaced by integration

CN,V =
1

kBT 2

∑
k 6=0

E2
k

eβEk

(eβEk − 1)2
=

1

kBT 2
4π

V

(2π)3

∞∫
0

dkk2E2
k

eβEk

(eβEk − 1)2
.

(268)
By making the approximation Ek = kBTa

√
2dκ we have

CN,V ≈ 4π

kBT 2

V

(2π)3

2dk2
BT

2
a

a3

∞∫
0

dκκ4 eTa
√

2dκ/T

(eTa
√

2dκ/T − 1)2

= kBV
π2

√
215

1

a3d3/2
(T/Ta)

3
.

P =
g

2

(
N0

V

)2

+
kBT

(2π)3

4π

a3

∫
dκκ2 ln(1− e−Ta

√
2dκ/T )

=
g

2

(
N0

V

)2

− kBπ
2T 4

189
√
a3T 3

ad
3/2

. (269)

4.8 Statistical mechanics and path integration

https://www-zeuthen.desy.de/~kjansen/lattice/qcd/miscellaneous/Welsing.

pdf and https://www.zeuthen.desy.de/~kjansen/lattice/qcd/miscellaneous/

CreutzFreedman.pdf
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The Wick rotation is a famous trick. It stems from the (rather annoying)
fact that the temporal component of the metric tensor has a different sign. After
taking t → iτ we obtain ds2 = dτ2 + dx2

i , so we can turn to our comforting
Euclidean metric.

It can connect relativistic field theory on Minkowski space Rd,1 with at
temperature T with field theory on Euclidean space Rd × S1

β , where S1
β is a

circle of length β = 1/T . What does it means ’connect’? One can obtain the
same partition function and therefore mean values of observables.

We will consider the example of farmionic oscillator. It is described by the
Hamiltonian H described in terms of fermionic annihilation/creation operators
b, v†.

H =

(
ψ†ψ − 1

2

)
ω . (270)

The corresponding partition function is

Z = Tr eβH = e
βω
2 + e−

βω
2 = 2 cosh (βω/2) . (271)

The (Wick-rotated) action is on the lattice is

S =

[
N∑
k=1

ψ̄k (ψk − ψk−1) +mψ̄kψk −
1

2
m

]
= ψ+Mψ − 1

2
ω (272)

with m = aω, a = β/N and

M =


(m+ 1) 0 0 1
−1 (m+ 1) 0 0

0 −1
. . . 0

0 0 −1 (m+ 1)

 (273)

Taking the eigenvector (for the Fourier transformation) as
(
eiw, ei2w, ...

)
it

can be quickly checked that the quantization condition is eiNw = −1 → w =
(2n−1)π

N and the eigenvalues are

λn =
(

(m+ 1)− e−i(
2n−1
N π)

)
. (274)

Two comments are due here. Firstly, the frequencies in this case are called
Matsubara frequencies. Secondly, the anti-periodic boundary condition is there
only for fermions, bosons have the periodic condition. Now we have

Z =

∫
dψ̄dψe−S = e

1
2ωβdet M = e

1
2ω

N∏
n=1

λn (275)

Using the fact that
N∏
n=1

(
A−Be− 2πi

N n
)

= An−Bn that follows from
(
zN − 1

)
=

N∏
n=1

(
z − e 2πi

N

)
, which can be believed after a couple of seconds of intensive gaz-

ing.
In our case A = m+ 1, B = eiπ/N we get
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N∏
n=1

(
(m+ 1)− e−i(

2n−1
N π)

)
= (1 +m)N − eiπ = 1 + (1 +m)N (276)

and after substituting a = β/N,m = ωβ/N and remembering that lim
N→∞

(1 + x/N)
N

=

ex

Z = e
1
2βω

(
1 + eωβ

)
(277)

which is the correct answer.
The procedure worked, because choosing asymetric derivative worked also

a Wilson term (a term that removes fermion doublers from the lattice de-
scription). If we used a symmetrical one we would have m on the diagonal
and ±1 above and below the diagonal. As a result, the eigenvalues would be

λn =
(
m+ e−i

2n−1
N − ei(

2n−1
N π)

)
= m+ 2i sin 2n−1

N π showing doublers.

Exercise: repeat the same for the bosonic oscillator.

5 Out-of-equilibrium statistical mechanics

5.1 Fluctuations, correlation functions and the Wick’s the-
orem

Systems are not always in equlibrium. So far we have mostly focused on the cases
when they are, let us now investigate the other case. Imagine we have a system
with energy E and macroscopic variables Ai, i = 1, ..., n. The number of such
states is Γ(E,A). Therefore, the probability to observe such a configuration is

P (E,A) =
Γ(E,A)

Γ(A)
(278)

and the corresponding entropy is

S(E,A) = kB ln (Γ(E,A)) (279)

and therefore

P (E,A) =
1

Γ(E)
exp

(
1

kB
S(E,A)

)
. (280)

The variables Ai have equilibrium values of A0
i plus a possible fluctuation αi

αi = Ai −A0
i . (281)

In the equilibrium the entropy assumes the minimal value and we can expand
it as

S(E,A) = S(E,A0)− 1

2

n∑
i,j=1

gijαiαj + ... (282)

where

gij = −
(

∂2S

∂Ai∂Aj

)
0

. (283)
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Plugging this back we obtain we obtain

P (α) =

√
det g

(2πkB)n
exp

− 1

2kB

∑
ij

gijαiαj

 . (284)

where the normalisation is w.r.t. (n−dimensional integration)

∞∫
−∞

dαP (α) =

∞∫
−∞

dαi × ...P (α) = 1. (285)

For example for a CVT system spread into i = 1, ..., l cells one can have

P ({∆Ti,∆ρi}) =

√
(V0cρ/T 2

0 )
l
((V0/T0)(∂µ/∂ρ)0)

l

(2πkB)2l
exp

(
− 1

2kB

∑
l

(
V0cρ
T 2

0

∆T 2
i +

V0

T0

(
∂µ

∂ρ

)
∆ρ2

i

))
.

(286)

5.1.1 Wick’s theorem

Let us now define the generating function

I(β) =

√
det g

(2πkB)n

∞∫
−∞

dα exp

(
− 1

2kB
αT · g · α+ βT · α

)
= e

1
2β

T ·g−1·β (287)

now using this we can see that the moments can be obtained by taking
derivatives w.r.t βi, for example

〈αiαj〉 = lim
β→0

(
∂2

∂βi∂βj
I(β)

)
= kBg

−1
ij . (288)

It is now a good time to recall the famous Wick theorem that states that we
can express higher (than quadratic) moments in terms of the quadratic ones,
for example

〈αiαjαkαl〉 = 〈αiαj〉〈αkαl〉+ 〈αiαk〉〈αjαl〉+ 〈αiαl〉〈αjαk〉 (289)

5.2 Dynamical fluctuations

For the temporal dependence of fluctuations it follows that

〈αiαj(τ)〉 = 〈αi(τ)αj〉 (290)

which follows from time-reversibility of Newtonian dynamics (the correlation
in that case depend only the difference between times t1, t2 on |τ | = |t1 − t2|
which does not change with time shift and/or reversal). The correlation matrix
〈αiαj(τ)〉

〈αiαj(τ)〉 =

∫ ∫
dαidαjαiαjP (αi, 0;αj , τ) =

∫ ∫
dαidαjαiαjP (αi)P (αi|αj , τ),

(291)
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where we have used the notion of joint probability. We already know that
reasonable close to the equilibrium the fluctuations are governed by the equation

P (α) =

√
det g

(2πkB)n
exp

− 1

2kB

∑
ij

gijαiαj

 . (292)

The joint probability is (note that fluctuation is a macroscopic variable that
has many microscopic realisations)

P (αi, 0;α′j , τ) = P (αi)P (αi|α′j , τ) (293)

=
1

Ω∆E(E)

∫
dqNdpN

∫
dqNdpNP (pN , qN |p′N , q′N , τ)(294)

where, since governed by Newtonian dynamics

P (pN , qN |p′N , q′N , τ) = δ
(
q′N − qN −∆qN (pN , qN , τ)

)
δ
(
p′N − pN −∆pN (pN , qN , τ)

)
(295)

where ∆ denotes Hamiltonian evolution. Now it is obvious that

P (pN , qN |p′N , q′N , τ) = P (−p′N , q′N | − pN , qN , τ) (296)

and joining those togather we have miscroscopic detailed balance

f(αi)P (αi|αj , τ) = f(αj)P (αj |αi, τ) (297)

5.2.1 (Different) generalised forces and currents

The change in entropy due to the fluctuations is

∆S = −1

2
αigijαj . (298)

We also know that when the system is pushed out of equilibrium, it tends
to return there. We can therefore defined a generalised force

Fi = gijαj = −
(
∂∆S

∂αi

)
(299)

and also in analogy a generalised current

Ji =
dαi
dt

. (300)

Then we have

d∆S

dt
= −FiJi (301)

This all seems very familiar and basically the only thing we have done is
that we have separated fluctuations from the equlibrium values of the variables
(which can be seen as the background).
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5.2.2 Regression of Fluctuations

Reichl and https: // www. iue. tuwien. ac. at/ phd/ mwagner/ node44. html

We can now ponder the time evolution of fluctuations

〈α(t)〉α0
=

∫
dααP (α0|α, t). (302)

Onsagar assumed that on average the fluctuations decay according to some
linear laws

d

dt
〈αi(t)〉α0

= −Mij〈αj(t)〉α0
(303)

which can be solved easily

〈α(t)〉α0
= e−M̄tα0 (304)

where bar is to stress that M is a matrix (α is a vector). We have to be careful
about the meaning of this expression or the meaning of time-derivative.

d

dt
〈αi(t)〉α0

=
d
dt 〈αi(t+ τ)〉α0 − d

dt 〈αi(t)〉α0

τ
, (305)

where T0 � τ
T , where T is the decay time of fluctuations and T0 is the time between particle
collisions. We can expand the solution as

〈α(t)〉α0 = α0 − tM̄ ]α0 +O(t2) (306)

this can be plugged into (290) to obtain

〈α0 · M̄α0〉 = 〈M̄α0 · α0〉. (307)

Now we can recall the relation 〈αiαj〉 = kBg
−1
ij to define a new matrix

L = Mg−1. (308)

Using the notion of generalised force we can write down

d

dt
〈αi(t)〉α0 = −L · 〈F〉α0 . (309)

This is the generalised Ohm’s law (j = σE). The crucial property of L is that
Lij = Lji which is called the Onsagar reciprocal relations. It states that if a
force resulting from fluctuation αi drives a flux of αj (or Aj), the fluctuation of
αj drives the flux of αi. For example, if the particle concentration current can
drive a heat current then also a temperature gradient can drive particle current!
This is very non-trivial!

For example we conservation laws for the flow of matter and energy

∂ρ

∂t
+∇ · jρ = 0 (310)

∂u

∂t
+∇ · ju = 0 (311)
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If the matter is not moving we have the Fourier’s law

ju = −k∇T = kT 2∇(1/T ). (312)

On the contrary, in the absence of heat flows we have the Fick’s law of
diffusion

jρ = −D∇ρ = D′∇(−µ/T ). (313)

In a general case where both matter and heat can be transported we have

ju = Luu∇(1/T ) + Luρ∇(−µ/T ) (314)

jρ = Lρu∇(1/T ) + Lρρ∇(−µ/T ), (315)

or in compact form jα = Lαβfβ .
In this case the fluctuations are in u, ρ, the conjugate forces are fu = ∇1/T

and fρ = ∇− µ/T . The Onsagar relation states that L is a symmetric matrix.

5.3 Wiener-Knitchine theorem, response matrix, fluctuation-
dissipation Thoerem

Reichl 7.4.2, 7.5.

5.3.1 Wiener-Knitchine theorem

Our goal is now to seek connection between fluctuations of the system and the
dissipation of energy in it. For example, if one forces a current in a circuit with
a resistor, the current will decay. Also, if one does not force any current, there
still will be some small (heat-forced) current fluctuations, so called Johnson
noise. Connection between fluctuation and dissipation is very general.

To begin with, let us defined the correlation matrix

Cij(τ) = 〈αi(τ)αj〉 (316)

which can be easily proven to be symmetric (follows from the microscopic re-
versibility discussed earlier). Recalling that 〈αiαj〉 = kBg

−1
ij = Cij(0) we can

easily see that

Cij(τ) =

∫
dα0P (α0)α0〈α(τ)〉α0

= kBg
−1 · e−M |τ |. (317)

We now define a modification of the time series α(t)

α(t; T ) = α(t) for |t| < T and 0 otherwise. (318)

We can now implement the Fourier transformation

α(ω, T ) =

T∫
−T

dtα(t, T )eiωT . (319)

Note that since the fluctuations are real we have α∗(ω, T ) = α(−ω, T ). And
now we can finally define the spectral density matrix

Sij(ω) = lim
T→∞

1

T
α∗i (ω, T )αj(ω, T ). (320)
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So far only definitions and definitions! It will now escalate quickly

Sij(ω) =

∞∫
−∞

lim
T→∞

∞∫
−∞

dtαi(t, T )α(t+ τ, T ). (321)

We can now employ the ergodic theorem (time averages equal averages over
phase space averages)

〈αiαj(τ)〉 = lim
T→∞

1

T

∞∫
−∞

αi(t, T )αj(t+ τ, T )dt (322)

from which we can see that

Sij =

∞∫
−∞

dτeiωτ 〈αiαj(τ)〉 =

∞∫
−∞

dτeiωτCij(τ). (323)

This is the celebrated Wiener-Khintchine theorem.

5.3.2 Linear response theory

As a starting step (and in our case the last as well) we can consider a linear
response of α to external forces F = (F1, ..., Fn). When such forces are applied
they lead to fluctuations

〈α(t)〉F =

∞∫
−∞

dt′K(t− t′) · F (t′). (324)

K is called the response matrix. From causality it follows that K(y) = 0 for

y < 0. Also, since finite force can only cause finite response we have
∞∫
0

dt <∞.

We can define the Fourier transform of caused fluctuations as

〈α(t)〉F =
1

2π

∞
lim
−∞
〈α(ω)〉F e−iωtdω (325)

and similarly for F (t). From this we have

〈α(ω)〉F = χ(ω) · F (ω), (326)

where χ(ω) =
∞∫
−∞

K(t)eiωtdt is called the dynamic susceptibility. This func-

tion is complex but from causality we can find a relation between its real and
imaginary parts

χ(t) =
1

πi
P

∞∫
−∞

χ(ω)dω

ω − t
(327)

where P is the Cauchy principal part.
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5.3.3 Fluctuation-dissipation theorem

Let us begin by considering a force that is constant F = F0 for t < 0 and F = 0
for t > 0. This leads to

〈α(t)〉F = χ(0) · F0 for t < 0 and
1

iπ
P

∞∫
−∞

dω
χ(ω)F0

ω
cos(ωt) for t > 0. (328)

We have established before that how quickly do fluctuations decay, so for
t > 0 we can compute the fluctuations either using the decay expression or using
the previous equation. Therefore we can establish that

e−Mt · χ(0) · F0 =
1

iπ
P

∞∫
−∞

dω cosωt
χ(ω)

ω
. (329)

Recalling that Cij = 〈αi(t)αj〉 = e−M |t|〈αiαj〉 we can obtain the famous
fluctuation-dissipation theorem

C =
1

iπ
P

∞∫
−∞

dω cosωt
χ(ω)

ω
· χ−1(0) · λαα〉. (330)

One of examples it relates to: when we put a particle with velocity into a liq-
uid, its velocity decays due to the drag. On the other hand, non-moving particle
is forced to move – randomly fluctuate – due to interactions with surroundings,
the so called Brownian motion.

The power absorbed by the system is simply obtained from

P (t) =

〈
dW

dt

〉
F

=

〈
−F · dα
dt

〉
F

= −F (t)·〈α̇(t)〉F = −F (t)· d
dt

∞∫
−∞

dt′K(t−t′)·F (t′).

(331)
This can be evaluated for example for a force applied only at a certain

moment F (t) = F0δ(t) to get

P (t) = i
1

(2π)2

∞∫
−∞

dω

∞∫
−∞

dω′ω′F0χ(ω′)F0e
i(ω+ω′)t. (332)

and

Wabs =

∞∫
−∞

P (t)dt = − 1

2π

∞∫
−∞

dωωF0χ
′′(ω)F0, (333)

where ′′ denotes the imaginary part. Now this can be obtained experimentally,
the real part can be computed from it from the causality condition.
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6 Transport coefficients

6.1 Brownian motion, Langevian equation

(Reichl 7.2)
Movement of a particle undergoing a Brownian motion is described by the
Langevin equation

dv(t)

dt
= − γ

m
v(t) +

1

m
ξ(t) (334)

where ξ(t) is a Gaussian white noise process that has 〈ξ(t)〉ξ = 0 and

〈ξ(t1)ξ(t2)〉ξ = gδ(t2 − t1). (335)

Formal solution (that holds for a certain realisation of ξ) is

v(t) = v0e
− γ
m t +

1

m

t∫
0

dse−(γ/m)(t−s)ξ(s) (336)

and

x(t) = x0 +
m

γ

(
1− e−(γ/m)t

)
+

1

γ

t∫
0

ds
(

1− e−(γ/m)(t−s)
)
ξ(s) (337)

As with the ’drunken sailor’ example, we can obtain some estimates despite
knowing exact details of a process. Given that 〈v0ξ(t)〉 = 0 we can obtain

〈v(t2)v(t1)〉ξ =

(
v2

0 −
g

2mγ

)
e−(γ/m)(t2 + t1) +

g

2mγ
e−(γ/m)|t2−t1| (338)

and similarly for the leading long-term displacement

〈(x(t2)− x0)
2〉ξ ≈

(
g

γ2

)
t (339)

When we average those equations w.r.t. thermal fluctuations we can take
〈v2

0〉T = kBT
m . Also, a stationary solution can depend only on the difference

t1 − t2 so the first term in the aforementioned equations has to be cancelled,
this is achieved by taking g = 2mγv2

0 = 2γkBT , yield the correlation function

〈〈v(t2)v(t1)〉ξ〉T =
kBT

m
e−(γ/m)|t2−t1| (340)

and for the displacement

〈〈(x(t)− x0)2〉ξ〉T =
2kBT

γ

(
1− m

γ

(
1− e−(γ/m)t

))
(341)

where we assumed stationary particle at the origin. Thus after a long time
〈〈(x(t) − x0)2〉ξ〉T = 2kBT

γ t from which we can read of the diffusion coefficient

D = kBT/γ (from the diffusion equation ∂tf = D∂xxf . For large Brownian
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particles we can use friction equation γ = 6πηa to measure the size a of the
particles.

The spectral density of the velocity auto-correlation function is

Sv,v(ω) =

∞∫
−∞

dτe−iωτ 〈v(t1+τ)v(t1)〉ξ,τ =
2kBT

m

γ/m

ω2 + (γ/m)2
=

∞∫
−∞

e−iωτCv,v(τ),

(342)
where the last equation is from the Wiener-Khintchine theorem.
The spectral density of the white noise is

Sξ,ξ = g = 2γkBT, (343)

all frequencies are equally possible.

6.1.1 The Fokker-Planck equation

(Reichl 7.3)
We are interested in getting the probability to find a particle in a given portion
of the phase space expressed in terms of the probability density ρ

P (x, v, t) = 〈ρ(x, v, t)〉ξ. (344)

We will denote the phase space coordinates X = (x, v) with

∞∫
−∞

dx

∞∫
−∞

dvρ(x, v, t) =

∞∫
−∞

dXρ(X, t) = 1. (345)

In a usual way we can define P (A0) =
∫
A0
dXρ. Probability current has to

be conserved

∂

∂t
P (A0)

∂

∂t

∫
A0

dXρ(X, t) = −
∮
L0

ρ(X, t)Ẋ · dS0 = −
∫
A0

dX∇X · (Ẋρ). (346)

As the area A0 is arbitrary we can conclude that

∂ρ

∂t
= −∇X · (Ẋρ) = −∂(ẋρ

∂x
− ∂(v̇ρ

∂v
. (347)

So far our discussion has been rather general. For the Brownian movement
with a potential V (x) we have

v̇ = −(γ/m)v + F/m+ ξ/m; ẋ = v, (348)

where F = −∂V/∂x. We can plug those expressions into the equation (347) to
obtain

∂ρ

∂t
= −L̂0ρ− L̂1ρ (349)

Where are interested in the observable probability P = 〈ρ〉ξ, the equation
governing its evolution is
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∂P

∂t
= −v ∂P

∂x
+

∂

∂v

((
γ

m
v − 1

m
F (x)

)
P

)
+

g

m2

∂2P

∂v2
(350)

which is called the Fokker-Planck equation for the observed probability P . It
can be cast in the form of continuity equation

∂P

∂t
= −∇ · J (351)

where J = (jx, jv) is the probability flux. The Fokker-Planck equation can
be solved exactly in the strong friction limit to obtain the familiar diffusion
equation

∂P

∂t
= D

∂2P

∂x2
, (352)

with D = g
2γ2 = kBT/γ.

6.2 Transport coefficients

The transport coefficients can be derived using a simple mean free path ap-
proach. We will consider a gas with particles well described by Maxwell-

Boltzman distribution F (v) =
(
mβ
2π

)
exp

(
−βmv

2

2

)
. The mean free path λ is the

average path that a typical particle travels between two collisions. Or expressed
in other terms, number of collision after travelling a unit distance is 1/λ.

Probability of having no collision satisfies

P0(r + dr) = P0(r)(1− dr

λ
). (353)

A probability that satisfies this condition is

P0(r) = e−r/λ. (354)

A simple sanity check: 〈r〉 =
∞∫
0

rP0(r)drλ = λ.

How frequently do particles collide? To figure this out we need to compute
the average relative velocity, which can be obtained from (double) Maxwell-
Boltzman integral. Imagine having two types of particles, denoted A and B,
their relative velocities are

〈vr〉AB =

(
8kBT

πµAB

)
(355)

where µAB = mAmB
mA+mB

.
Now knowing the relative velocity we can move to the rest frame of particle

B and figure out how long will it take for a particle A to hit it. The collision
parameter is dAB = (dA+dB)/2 where d is the diameter. The particle A sweeps
out a collision cylinder of volume

V = πd2〈vr〉ABt. (356)

So the collision frequency is fAB = nBπd
2
ab〈vr〉AB and the number of colli-

sions is
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νAB = nAnBπd
2
ab〈vr〉AB = nAnBπd

2
ab

(
8kBT

πµAB

)
(357)

If the particles are of the same count we have to add a factor of 1/2 to
prevent overcounting. So for a gas of identical particles we have

λ =
〈v〉
fAA

= 〈v〉τ =
1√

2nAπd2
AA

(358)

where τ is the mean time between collisions and 〈vr〉 =
√

2〈v〉.
We can now imagine there are two types of particles, tracer particles we pay

attention to and the rest of the stuff. If there is a gradient of the tracer particle
concentration there will be some flow through a surface are dS. To compute it
we have

Ṅ+ =
〈v〉
4πλ

∞∫
0

r2dr

π/2∫
0

sin θdθ

2π∫
0

dφnT (z) cos θ
e−r/λ

r2
. (359)

a similarly for the particles coming from the other way. We can assume that
the particles that passes the surface has collided last time at z ≈ λ so we can
take nT (z) ≈ nT (0) + z

(
∂nT
∂z

)
0
. Using this we obtain

Ṅ+ − Ṅ− =
〈v〉λ

3

(
∂nT
∂z

)
0

. (360)

From this we have the diffusion equation

JD(z) = −D∂nT (z)

∂z
(361)

where D = 〈v〉λ
3 is the coefficient of self-diffusion.

If there is some property A(z) that varies along the system (temperature,
concentration, velocity in some preferred direction) we can compute how is this
transported by the movement of particles.

JA(z) = −bAn〈v〉λ
A.
z.
. (362)

By comparing with the previous equation we can see the coefficient of pro-
portionality is bA = 1/3.

If the property is the velocity in a perpendicular direction A(z) = m〈vy(z)〉
we get

Jzy = −η d〈vy(z)〉
dz

(363)

where η = 1
3nm〈v〉λ is the coefficient of shear viscosity.

If the property is A(z) = 1
2m〈v

2(z)〉 = 3
2kBT (z) we obtain the heat flow

equation

JQ = −KdT

dz
, (364)

with K = 1
2n〈v〉λkB .
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6.3 Boltzman equation

Černý, Melo: Selected topics from statistical physics 8

6.3.1 Cross section

The scattering process is characterised by a cross section which is the ratio

dσ = dN/j. (365)

We have the notion of an impact parameter b(θ) that states how far from
the center (assuming at least axial but preferably rotational symmetry) needs
the target to be hit to scatter the particle by the angle θ.

dσ = bdbdϕ = b(θ)|db(θ)
dθ
|dθdϕ. (366)

Usually we are interested in the differential cross section

dσ

dΩ
=
b(θ)

sin θ
|db(θ)
dθ

. (367)

We can express the cross-section in terms of the undergone process σ(v1,v2 →
v′1,v

′
2). The cross-section inherits the symmetries of the underlying theory

σ(v1,v2 → v′1,v
′
2) = σ(−v′1,−v′2 → v1,v2) (368)

σ(v1,v2 → v′1,v
′
2) = σ(Rv1, Rv2 → Rv′1, Rv′2)

σ(v1,v2 → v′1,v
′
2) = σ(v′1,v

′
2 → v1,v2)

where R denotes either the rotation or reflection.
The naive intuition is that the physical cross-section is the geometrical cross-

section, which, however, is not true. This can be seen by considering that point
particles (with for example EM interaction) have non-zero cross section. Also,
the cross-section of a hard-sphere scattering σ = π(2R)2 does not match its
geometrical cross-section.

6.3.2 Boltzmann equation without collisions

We will consider the probability density f(r,v, t). The particle density around
the point r is

n(r) =

∫
f(r,v, t)d3v. (369)

This function is related to a single particle density ρ1 by f = Nρ1 (this
relation seems obvious but requires some work to prove).

Without collisions, under the influence of force F the positions and velocities
evolve according to Newtonian laws. From this we have

f(r0,v0, 0) = f(rt,vt, t) (370)

where the subscript t denotes the time-evolved quantities. From this we have
the collision-free Boltzmann equation
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d

dt
f(r,v, t) = 0 =

(
∂

∂t
+ v · ∂

∂r
+

F

m
· ∂
∂v

)
f(r,v, t) = Df(r,v, t) (371)

The equation is simply Df(r,v, t) = 0, the collision version would have r.h.s.
Df(r,v, t) = Dcf(r,v, t).

6.3.3 Heat conduction in the approximation of relaxation time

In a similar manner as in our discussion of transport coefficients, let us take

f(x,v) =

∫
dt′

τ
e−t

′/τf0(r− vt,v), (372)

where we consider dependence only in the x direction and f0 has the form
of Maxwell distribution

f0(x,v) = n(x)

(
mβ(x)

2π

)3/2

exp

(
−1

2
β(x)v2

)
. (373)

The unknown functions n, β are related to f by

n(x) =

∫
d3vf(x,v, t), (374)

3

2β(x)
=

∫
d3v

1

2
mv2f(x,v, t).

We now apply per-partes to (372) to obtain

f(x,v) = f0(x,v) +

∫
df0(x,v)

dt′
exp (−t′/τ) dt′. (375)

Keeping in mind that only region t ∈ (0, τ) contributes to the integration
we can plug in the expressions for n, β into f ′0 with f0 replacing f on the r.h.s.
(which would be next-to-leading order correction in our small t expansion to
obtain

f(x,v) = f0(x,v) + τ

(
− dn(x)

n(x)dx
vx −

3

2

dβ(x)

β(x)dx
+

1

2
mv2 dβ(x)

dx
vxf0(x,v)

)
(376)

We are interested in the stationary solution so 〈vx〉 = 0. As the distribution
f0 is Maxwell-like, so are the moments

〈v2
x〉0 = frac1mβ, 〈v4

x〉0 =
3

(mβ)2
, ... (377)

and so on. Multiplying (376) with vx and integrating over we obtain

0 =

(
− dn

ndx
〈v2
x〉0 −

3

2

dβ

βdx
〈v2
x〉0 +

1

2
m
dβ

dx
(〈v4

x + v2
x(v2

y + v2
z)〉0

)
(378)
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=
τ

mβ

(
− dn

ndx
+

dβ

βdx

)
(379)

which gives

dn

ndx
=

dβ

βdx
(380)

which tells us that nkT = const, in other words the pressure is constant. We
can compute the flow of energy jE = 1

2nm
〈
v2vx

〉
using the relation for the

moments

jE =
5τ

(mβ)2

dβ

dx
=

5

2

τk2Tn

m

(
−dT
dx

)
(381)

which is (again) the heat flow equation with the coefficient κ = 5
2fracτk

2Tnm.

6.3.4 Collision term

If a volume in the phase space flows according to Newtonian dynamics, it is
conserved. This can change if some particles interact, which can either cause
them to be removed or added to the trajectory. The change rate of particles in
infinitesimal phase space volume and a unit of time is

D−Cf(r,v, t)d3rd3vdt = d3rd3vdt

∫∫∫
d3v1d

3v′d3v′1|v−v1|f(r,v, t)f(r,v1, t)σ(v,v1; v′,v′1)

(382)
which is caused by a particle with any velocity v1 hitting the particle with

v and scattering with velocities v′1 and v′. The number of such interactions per
unit time is proportional to the difference |v − v1|. Similar process can result
in a particle with the velocity v at the position r.

D+
Cf(r,v, t)d3rd3vdt = d3rd3vdt

∫∫∫
d3v1d

3v′d3v′1|v′−v′1|f(r,v′, t)f(r,v′1, t)σ(v′,v′1; v,v1).

(383)
The energy conservation gives |v − v1| = |v′ − v′1| while the PT invariance

gives σ(v,v1; v′,v′1) = σ(v′,v′1; v,v1).
The total collision term DC = D+

C −D
−
C is

DCf(r,v, t) =

∫∫∫
dv1d

3v′d3v′1|v′ − v′1| (f ′f ′1 − ff1)σ, (384)

where we gave up on writing the arguments where they are obvious from the
notation.

6.3.5 Conservation laws

Let us consider a general observable O

〈O〉 =
1

n(r, t)

∫
d3vf(r,v, t)O(r,v, t). (385)

We can now take the Boltzmann equation Df = DCf , multiply it with O
and integrate over d3v. In each of the terms of Df we can use that A∂B =
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∂AB − (∂A)B (and assuming forces being independent of the velocities) to
obtain ∫

d3vODf(r,v, t) = n (DO)− ∂

∂t
〈nO〉 − ∂

∂xa
〈nvaO〉 (386)

Now for the r.h.s., in
∫
d3vODCf we integrate over 4 different velocities and

can use the symmetries of σ to obtain that the integral is equal to

∫
d3vODCf =

1

4

∫∫∫∫
d3vd3v′d3v′1d

3v′(f ′f ′1−ff1)|v1−v|σ (O′ +O′1 −O −O1) .

(387)
So in the case of observed quantities O′ +O′1 = O +O1 we have

n (DO) =
∂

∂t
〈nO〉+

∂

∂xa
〈nvaO〉 (388)

If we take O = m the equation (388) yields

∂

∂t
〈nm〉+

∂

∂xa
〈nmva〉 = 0 (389)

which for the case of density being independent of velocity takes the form

∂ρ

∂t
+∇ · (ρu) = 0 (390)

where we took u = 〈v〉 as the mean velocity to identify the continuity equation.
We can separate the mean velocity and the fluctuations v = u + U, it is

obvious to see that

〈vavb〉 = uaub + 〈UaUb〉. (391)

Introducing the tension Pab = ρ 〈UaUb〉 to see that the conservation of mo-
mentum vam leads to Euler hydrodynamic equation.

∂

∂t
ρub +

∂

∂xa
ρuaub = −∂Pab

∂xa
+ Fb/m. (392)

6.3.6 H-theorem

Boltzmann considered the time evolution of the quantity

H(t) =

∫
d3vd3f ln f. (393)

Why? I was known that microscopic world is reversible while macroscopic
is not. Why are close to the border so we should be able to see the growth of
the entropy. So he defined this term, coined it E, wrote it as the capital Greek
letter Eta and the confusion began, turning it into H instead.

We are interested in dH(t)
dt which can be – in a similar manner as before –

turned into
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dH(t)

dt
= −1

4

∫
d3rd3vd3v1d

3v′d3v′1|v−v1|ff1 ln

(
f ′f ′1
ff ′

)(
f ′f ′1
ff ′
−
)
σ(v,v′; v′,v′1)

(394)
Most of the terms in the integrals are obviously positive. The (x−1) lnx ≥ 0

is less obvious but still firmly positive, therefore

d

dt
H(t) ≤ 0 (395)

so the quantity tends to the minimum and stays there. The minimum is
realised by f being Maxwell-Boltzman distribution.

7 Bonus lectures

7.1 Black hole entropy

Central point is the paper Black Holes and Entropy by Jacob Bekenstein. The
central question is: what happens if we drop a system with some entropy into
a black hole? Black hole is described by three parameters: M,J,Q and naively
there is no microscopic description and therefore no entropy involved.

However, Hawking noticed that during any process, the total black area has
to increase.

By differentiating the formula for the surface are and solving for dM one
obtains

dM = Θdα+ JdL + φdQ, (396)

where Θ is a function of the radius and α = A/4π where A is the surface area
of the event horizon.

This seems even more suggestive, it seem that the surface area plays the role
of the entropy. When you drop a particle into the black hole, your lose at least
a bit of information – you don’t know if the particle exists or not.

By considering the increase of surface area by dropping a harmonic oscillator
(of know entropy) one obtains more detailed expression.

The conclusion of Bekenisten analysis is that the second law has to be gen-
eralized to include the black hole entropy (source of which is not understood
even today)

dSuniverse + dSBH ≥ 0, (397)

where SBH = A
4L2

P
where LP is the Planck length.

7.2 Maxwell demon, Szilard machine and Landauer heat

We know that the entropy of an isolated system cannot decrease. Imagine the
situation of a room split into two parts, separated by a small door operated by
a small creature – called the Maxwell demon. The demon can work as a filter:
for example letting molecules of one type move from the left to right and the
other way for the second type of the molecule. As a result, he decreases the
entropy of the room. Is the second law violated?
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Szilard and Brilloun thought that by obtaining information is the demon
increasing the entropy by interacting with photons carrying the information
about position of the particles – heating up by absorbing their entropy. This
isn’t the correct explanation.

We know that friction is not reversible. A ball sitting at one point does
not tell you from which side did it come from. During this process, heat was
produced. That makes sense, irreversibility means we are moving towards a
larger portion of the phase space – which has larger entropy.

Landaur was considering the minimal heat that needs to be produced when
manipulating with information. He found out that erasing a bit of information
releases the heat kBT ln 2. Consider a system spit into two equal volumes, a
particle can be in a single cell – denoting 0 or 1. How to reset this system to the
state 0 lets say? Remove the wall (particle now moves in 2V ), place it on the
right side and move it to the left. A work equal to kBT ln 2 has to be applied.
Forgetting is costly. It was later realised that the demon returns the entropy
when returning to his original state. However, what happens in between?

It was realised that there is another form of entropy involved. With the onset
of computers Turing and Neumann considered the general idea of a computer.
After passing a certain threshold, computers are equal in a sense that they can
simulate each other (it can be very slow but reach the same result). The crossing
point is called the Turing machine. A simple mechanism that can move along
a line of bits and can 1. read, 2. write, 3. operates with an internal memory of
at least 4 bits).

A computer program is something produces a string S of length L. How much
information is stored in S? Some strings seem rather random 101000101001010101011
some seems to be easy to predict 000000000....0000. The definition is that the
algorithmic entropy (or Kolmogorov complexity) of a string is proportional to
the length of the shortest code S∗ that produces it as out. (A random string is
one for which LS ≈ LS∗ , there is no way of compressing the string.

The claim is that after obtaining the information and before realising it, de-
mon’s mind carries the algorithmic entropy. The problem is that the algorithmic
entropy cannot be computed.

A known example is the halting problem – no program can predicting in
general where other program will halt or not. If it existed, one could produce a
computer version of the barber paradox – does a barber who shaves every man
not shaving himself shave himself? One could make a program that halts if and
only if checking a program that does not halt – and then let it act on itself.

Another known paradox is the one named after the librarian Berry. ”A word
that cannot be described by the twelve words or less” cannot exist since this
sentence describes it. If we were able to compute the algorithmic entropy we
could produce a computer version of this paradox, something along the lines ”A
shortest program that cannot be described using N bits or less”.

7.3 Introduction to complexity theory

.
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7.4 Quantum theory at finite temperature via path inte-
gration

.

7.5 Hagedorn phase transition

.

7.6 Statistical physics and brain

.
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