
Automatic file format analysis

Richard Ostertág, Martin Pašen

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Abstract: During an analysis of the security of various de-
vices, researchers often face the task of analyzing the for-
mat of an unknown binary file. There are various tools that
can help them, but these tools are often limited in depth of
their analysis (e.g. they just analyse the entropy). In this
article, we will describe our effort to use machine learning
to get a more detailed overview of individual parts of an
unknown binary file without requiring user intervention.

1 Motivation

Various tools such as Veles[3] or binwalk[1] can be used
to analyze the format of unknown binary files.

1.1 binwalk

Binwalk is usually used for its signature and entropy anal-
ysis. Signature analysis is depicted in the following table:

Table 1: Example of binwalk signature analysis output. [1]
(binwalk --signature firmware.bin)

Decimal Hex Description

0 0x0 DLOB firmware header, . . .
112 0x70 LZMA compressed data, . . .

1310832 0x140070 PackImg section delimiter . . .
1310864 0x140090 Squashfs filesystem, . . .

Figure 1 shows the plot of entropy for Grandstream
GXP2000 firmware file.

1.2 Veles

Veles [3] is interesting for his 3D visualisation of binary
files. The intensity of point (x,y,z) in 3D cube represents
the probability of byte sequence [x,y,z] in the visualised
file. Example of such visualisation is shown in figure 2.

2 Our approach

Goal of our approach is to create algorithm that will take
binary file and divide it into segments with captions, e.g.,
code - x86, text - ascii English, image - bmp, noise - zip,
. . . . Our approach is composed of rounds. In every round
we use same process for every segment. We are analyz-
ing segments by sections (e.g. 100 bytes long), that can

Figure 1: Example of binwalk entropy. [2]

Figure 2: Example of Veles 3D visualisation of binary file
consisting of compiled code (x86 32-bit). [4]

overlap. From now on we will refer to these sections as
windows. Using extracting function, we get information
about window, and then we feed this information to pre-
dicting model. Output of predicting model is prediction
about window. If we are analyzing segment with caption
raw data, than prediction can be: 0.95 code, 0.01 text, 0.02
image, 0.02 noise. If we are analyzing segment with cap-
tion image, prediction can be: 0.5 bmp, 0.5 jpg, 0 gif, 0
png, . . . First prediction should be interpreted as : this win-

Figure 3: 2D visualization of code

dow is filled with bytes representing code, second predic-
tion should be interpreted as : this window is on the edge
of two different things, one half is bmp and one is jpg. Af-
ter that, using predictions about every window, we divide
segment into subsegments. When segment is divided into
subsegments, we use smoothing model to smoothen sub-
segments. It can decide wheather we shall connect some
neighbouring subsegments and which caption shall be pre-
vented. We are repeating this process in rounds, until all
segments aren’t in final state. They get to final state, when
they have caption, that we dont know how to further ana-
lyze.

2.1 Information extracting function

To determine, whether binary file is code, text or bitmap
using Veles[3] 2D (or 3D) visualization, is simple. Code 3
is identifiable by its vertical and horizontal lines (result of
higher appearance of bytes, that represent frequently used
instructions, or are part of longer representations of these
instructions). Text 4 is recognizable for its square in area
of ASCII letters and some vertical lines in are of space,
dot, . . . Bitmap 5 has brighter diagonal, as a result of fact,
that adjacent pixels have, most of the time, similar colors.
So 2D visualization (from now on referenced as Double
BFD) is good enough information and models should be
capable to make correct predictions using this information.
But its problem is too big size 256*256 and that makes this
function almost unusable.

Identity Natural question is, why not just give window as
input to model. One problem is, that models have fixed
input shape, so model trained like this has to be connected

Figure 4: 2D visualization of text

Figure 5: 2D visualization of bitmap

to fixed length of window. But that isn’t that big of a prob-
lem. Bigger problem is its efficiency. As we can see in ta-
ble 3, whatever learning model we use it’s not even close,
compared to other functions. That is bit of contradictory.
It has more information than any other function, but it has
the worst performance. Maybe problem is in architecture
of neural net. Maybe using more complex net, bigger data
set, techniques to fight over fitting and bigger computa-
tional power we could harvest this information and get best
results. Or maybe whatever net we use, there will be just
too many traps (local minimums) to get to efficient infor-

mation extraction.

Double BFD Output of this function is an array of length
256∗256 and i-th element in this array represents normal-
ized occurence of adjacent bytes A B, where A = i/256
and B = i%256.

BFD Output of this function has length 256 and i-th el-
ement represents normalized occurence of byte A where
A = i.

shifted BFD In exploring stages of project, we had idea
about Double BFD from Veles visualization, naturally
BFD came up, as it was similar and used in problems like
this (identifying language, . . .). When exploring we de-
cided to try shifted BFD. Shifted BFD means, that instead
of counting normal bytes, we count newly created bytes
like that: Lets say our window of 100 bytes looks like this
: A B C First newly created byte X would be com-
puted like this:

X = A << 4+B >> 4

Second byte Y like this:

Y = B << 4+C >> 4

We had lower expectations of this than BFD, because bytes
in BFD naturally represent instructions, . . . , so we thought
BFD had higher informational value. But tests proved us
wrong. When we saw, that shifted bfd works as well, we
tried to connect these two, and we got better results. In-
creasing granularity of this idea we got function Shifts,
that is currently working with best results in almost all
tests.

Shifts Output of this function has length 256 ∗ 8. This
function is 8 times used BFD with offsets 0, 1, ..., 7. Off-
set x means, that instead of couning bytes in window, we
count shifted bytes by x bits. Shitfed Bfd is example of
offset 4. So we create new byte by taking last x bits from
first byte and 8-x bits from next byte.

Entropy, adjacency index, ... Some of our functions have
only 1 number as output. For example entropy, evaluated
on level of bytes, and adjacency index. Adjacency index
represents average distance of neighbouring bytes.

Comparison of extracting functions Accuracy is result
of many variables (length of window, number of training
samples, . . .), but most significantly of these 3:

• level (what are we trying to distinguish between : for-
mats of image, language of text, . . .)

• model

Table 2: Evaluation of extracting function

Model 1 2 3 4

Identity 0.46 0.50 0.50 0.17
Double BFD 0.72 0.99 0.46 0.10

BFD 0.82 0.98 0.92 0.12
shifted BFD 0.84 0.99 0.86 0.13

Shifts 0.89 0.99 0.96 0.12
Entropy 0.70 0.39 0.49 0.17

• extracting function

As it isn’t simple to show tables with 3 variables and in
next section we will discuss what learning model to use
(and we will decide for neural network), in this section
we will compare different extracting functions on different
levels using neural net. We will use these levels:

1. code, text, image, noise

2. arm_linux, mips_linux, x86_linux, x86_windows,
x86_64_linux, x86_64_windows

3. bmp, gif, jpg, png, png_greyscale

4. bztar, gztar, cypher_aes, random noise, xztar, zip

2.2 Predicting model

Job of predicting model is to take output of extracting
function and predict what this window is. First we will
use Orange for rough, but simple, evaluation 3 of poten-
tial of models. Shown evaluation is on level, where we are
going from caption raw data (not yet analyzed data; first
round) to one of : text, code, image, noise. After few simi-
lar evaluations on different levels we decided to use neural
networks. They were most consistent and even most of
the times they had the best performance. But we are not
disqualifying possibility, that on some level, using some
special extracting function, some model can be better than
neural net. That’s, why adding another learning models, is
one of many possible improvements of our program. But
for now we will work with neural nets.

2.3 Smoothing model

Let’s say that window has size 100 bytes, and we move
window by 5 bytes after every evaluation. So every byte
is part of 20 windows. To get final prediction values for
byte we average those twenty predictions. Then we take
maximum of averaged predicted values and that is our pre-
diction. By connecting neighbouring bytes with same pre-
diction we create segments. The whole binary file is di-
vided into these segments and every segment represents 1

Table 3: Evaluation of models using Orange

Model BFD Shifts Identity

Neural Net 0.82 0.89 0.46
kNN 0.84 0.86 0.26
SVM 0.81 0.89 0.37
SGD 0.81 0.87 0.40

logistic Regression 0.74 0.87 0.29
Naive Bayes 0.78 0.87 0.65

group, for example text. Problem is, that this way we can
get many segments with small length e.g. 5, 10, 15 bytes.
Firstly this is problem for further rounds of evaluation and
secondary output like that would be useless. So next step is
smoothing of segments. Input of smoothing model will be
information about actual, previous and next segment and
output will be 0, 1 or 2. 0 means connect actual model with
previous and remain caption of previous segment. 1 means
to not connect anything and 2 means connect actual seg-
ment with next and remain caption of next segment. Again
we face similar problem. We need to use some function to
extract information of segment, and we need right model
to evaluate this information and create prediction.

extracting information The most important information
of segment is its caption and length. Another option is to
average predictions of bytes that are in this segment. Now
we are using combinations of this two options.

model As in previous similar situation, we have chosen
to use neural networks. Advantage of this situation is, that
our input shape is small (varying from 12 to 25). Disad-
vantage is, that automatic creation of samples takes too
long and sometimes its almost impossible. So in these sit-
uations, when we have too small training set, we are inca-
pable of training neural net, and we need to use different
approach. That is simple model which connects too small
segments (e.g. less than window size) with longer neigh-
bor.

3 Implementation

Our program is capable of two things. One — given data
sets in tree structure, it is able to train models and evalu-
ate them (model to recognize picture from text was created
and has 95 % chance to identify correctly ; model to recog-
nise rar from zip using window with length 100 bytes has
chance 50%). Two — given trained models, it can ana-
lyze any binary file. It is all done in Python using many
libraries, such as Keras[7], SciPy[8] and MatPlotLib[9].

raw data

Text

format

ascii utf-8

language

englisch germany french

code picture

Figure 6: example of tree architecture of future predictions

3.1 Training models

Let’s say we have data for training in structure as is shown
in figure 6. In the end, when program will be ready, it
will work like this. First it will take binary file and di-
vide it into segments of Text, code and picture. With seg-
ments code and picture it will be finished but with segment
Text it will continue. It is really important that T is capi-
tal in Text. It means, that program is not supposed to di-
vide segments with caption Text to segments of format and
language, but it is supposed to fork and continue on two
fronts. For every segment it is supposed to determine its
language (and if there are more languages, then divide this
segment into sub segments) and format. For every node
except leaves and nodes with capital first letter program
creates new predicting model and smoothing model. This
training is well parametrized, meaning, that you can spec-
ify your own keras model for net, you can specify number
of training samples, length of window, number of epochs,
early stopping, . . .

3.2 Analyzing

Program takes whatever binary file you give it and starts
with creating one big segment with caption raw data. Then
it will recursively divide and recaption segments, until they
are not leaves. So it starts with 1 segment captioned raw
data. After first round of analysis we will get for exam-
ple 4 segments Text, code, picture, code. All segments
but Text have caption that is a leaf, so they are final. In
second round, segment Text will be analyzed, and we will
get for example segments: ascii English and ascii french.
On this picture 7 we can see output of 1 round of anal-
ysis. This binary file is composed of 250 bytes of BMP,
279 jpg, 233 png, 241 gives. Lines are output of predict-
ing model. Background colors are output of smoothing
model. As we can see it correctly guessed number of seg-
ments and it correctly guessed 3 of four segments. We
can see, that precision of borders (produced by predicting
model) of segments is mostly +- 10 bytes, only first one is
out by 50 bytes. Before using smoothing model, from po-
sition 550 to 630 there was segment png_greyscale, from
760 to 820 gif and in area from 820 to 835 there is only few
bytes captioned as jpg. Clearly in this situation smoothing

model failed. Png_greyscale connected to jpg instead of
png and area from 760 to 835 ruled by gif and jpg was
connected to png instead of gif.

4 Evaluation

Some evaluations have been already shown in table 3. But
there we had easier job. We did not have to care about
borders. We were considering only binaries of one type.
Now we need some function to evaluate models. If we
will have good evaluating function, than it will be easier
to select best net from all possible. Nets with different
architecture, functions, optimizers, using different extract-
ing functions, window length and step by which we move
window. Different smoothing model. Two most important
properties are precision and speed. Speed is the easier one.
Precision should consider information like number of cor-
rectly identified bytes, percentage of correctly identified
segments, number of segments, . . . Even thou at this mo-
ment we dont have good enough evaluating function, only
basic one (correctly guessed bytes / all bytes), we can say
it works pretty good as we could saw in previous example
7. Of course, it depends on what we are trying to evaluate.
If we are trying to determine whether noise is.rar,.zip, en-
crypted file, or just random noise, it acts like it is flipping
coin. But when we are working on .png, .jpg, .bmp, .gif,
.png_greyscale we get precision from 50% to 60%.

5 Conclusion

Most of done work until this moment is connected with
creating data sets, exploring working options and creating
program, that will take care of all the work behind. Very
few of it was connected with trying out more nets, different
functions, evaluating functions, So even thou some %
are not best numbers, there is a lot of possible and now
much simpler work to be done to improve that and even
thou most of the work was focused on creating tools to
train nets and use them.

References

[1] ReFirmLabs: Binwalk
https://github.com/ReFirmLabs/binwalk

[2] Firmware hacking blog: Grandstream GXP2000 – binwalk
entropy
https://fwhacking.blogspot.com/2014/05/

grandstream-gxp2000-7-binwalk-entropy.html

[3] CodiSec: Veles
https://codisec.com/veles

[4] CodiSec: Binary data visualization
https://codisec.com/binary-data-visualization

[5] Christopher Domas: The Future of RE: Dynamic Binary Vi-
sualization. RECON 2013.
https://www.youtube.com/watch?v=C8--cXwuuFQ

[6] Bioinformatics Laboratory, Faculty of Computer and Infor-
mation Science, University of Ljubljana, Slovenia: Orange
https://orange.biolab.si

[7] Chollet, François and others
https://github.com/fchollet/keras

[8] Eric Jones and Travis Oliphant and Pearu Peterson and oth-
ers
https://www.scipy.org/

[9] Hunter, J. D.
https://matplotlib.org

https://github.com/ReFirmLabs/binwalk
https://fwhacking.blogspot.com/2014/05/grandstream-gxp2000-7-binwalk-entropy.html
https://fwhacking.blogspot.com/2014/05/grandstream-gxp2000-7-binwalk-entropy.html
https://codisec.com/veles
https://codisec.com/binary-data-visualization
https://www.youtube.com/watch?v=C8--cXwuuFQ
https://orange.biolab.si
https://github.com/fchollet/keras
https://www.scipy.org/
https://matplotlib.org

Figure 7: One round of analysis

	Motivation
	binwalk
	Veles

	Our approach
	Information extracting function
	Identity
	Double BFD
	BFD
	shifted BFD
	Shifts
	Entropy, adjacency index, ...
	Comparison of extracting functions

	Predicting model
	Smoothing model
	extracting information
	model

	Implementation
	Training models
	Analyzing

	Evaluation
	Conclusion

