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his valuable advice and help. Lastly, I would like to thank my family, whose unconditional

support and encouragement made this work possible.



v

Abstrakt

S narastajúcim nasadzovańım umelej inteligencie v praxi sa úmerne tomu zvyšuje aj potreba

kvalitných dát. Niektoré typy dát sa však źıskavajú náročneǰsie než iné a jedným z nich sú

aj priestorové dáta pre odhad polohy objektu. Priestorové dáta sú obzvlášt’ známe pre ich

náročnú manipuláciu v tradičnom desktopovom prostred́ı. Takéto dáta sú však nevyhnutné

pre mnoho aplikácíı v oblasti automatizácie a robotiky. V tejto práci predstavujeme webovú

aplikáciu využ́ıvajúcu virtuálnu realitu určenú na ul’ahčenie 6D anotácie v RGB-D dátach.

Náš pŕıstup využ́ıva intuit́ıvnu povahu virtuálnej reality a transformuje tradične namáhavý

proces 6D anotácie na už́ıvatel’sky pŕıvetivý. Navrhované riešenie umožňuje použ́ıvatel’om

priamo interagovat’ s mračnami bodov vo virtuálnom prostred́ı, č́ım umožňuje efekt́ıvnu an-

otáciu objektov v 3D priestore. Ďalej sme tiež experimentovali s možnost’ou zlepšenia exis-

tujúcich algoritmov pre zarovnávanie 3D modelov poskytnut́ım vstupu od človeka v reálnom

čase. Na záver sme pre zhodnotenie efekt́ıvnosti a použitel’nosti aplikácie vykonali použ́ı-

vatel’skú štúdiu porovnávajúcu rýchlost’ a presnost’ anotácie v našej aplikácii s anotáciou v

tradičnom desktopovom prostred́ı.

Kl’účové slová: 6D, 6D anotácia, mračná bodov, RGB-D, virtuálna realita, web, ICP, 3D

UI, UX, human-in-the-loop, human-centered computing
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Abstract

As the reliance on artificial intelligence expands, the need for data correspondingly rises.

Nevertheless, certain data types, such as those frequently used for object pose estimation,

prove difficult to acquire. Particularly, spatial data poses challenges when handled within

a conventional desktop environment. However, object pose estimation remains crucial in

numerous applications within automation and robotics. In this thesis, we present a web

application using virtual reality dedicated to facilitating the 6D pose annotation of RGB-

D point clouds. Our approach leverages virtual reality’s immersive and intuitive nature,

transforming the traditionally laborious process of 6D pose annotation into a user-friendly

experience. Proposed solution enables users to interact directly with point clouds within

a virtual environment, allowing for practical object annotation in 3D space. Furthermore,

we also experimented with the possibility of improving existing algorithms for aligning 3D

models by providing input from a human in real-time. Finally, to evaluate the application’s

performance and usability, we conducted a user study comparing the speed and accuracy

of 6D pose annotation in our VR environment with annotation in a traditional desktop

environment.

Keywords: 6D, 6D pose annotation, point cloud, RGB-D, virtual reality, web, ICP, 3D UI,

UX, human-in-the-loop, human-centered computing
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Introduction

The world around us shaped us into the beings we are today. Millions of years of evolution

have taught us to recognize patterns and make assumptions about the world in a split second.

We are here today not because of our ability to question the cosmos but because of our ability

not to. We can truly appreciate this fact when we try to describe any of the things we take

for granted. For instance, to instantly recognize an object’s position and orientation in space

with only a glance. Determining an object’s position and orientation is also necessary for

software applications, ranging from robotics to augmented reality and object recognition. It

is, in fact, a cornerstone of many automation advances of recent years. However, computers

do not see the world just like we do. Instead, they see numbers, where we see colors and

meaning. Consequently, explaining what position and rotation mean in a language they would

understand is extraordinarily challenging. Luckily, even though we do not know how to tell

them, we know how to show them. However, we still need to show them a lot, like a really,

really lot of examples. To produce this many examples requires an astonishing amount of

time, effort and can seem like a never-ending task.

Therefore, in this thesis, we have decided to look at this problem and find ways to perform

this task more efficiently and make it more enjoyable.

To this end, we implemented a web application utilizing virtual reality.

In the first chapter, we dive into the location estimation problem and unravel its intricacies.

We will discuss the challenges of this task and the approaches that have been used to solve it.

Moving on to chapter two, we will look at the problem ahead of us and try to plot the right

strategy to solve it. Next, we will review some existing solutions to learn as much as possible

from them. In chapter four, we will delve into the how-tos of our proposed solution, discuss

the technologies we used, and explain the obstacles we encountered and how we overcame

them. Finally, we are going to put our solution to the test. We will see how it holds up in

the face of real users, and their feedback will help us define the course of future action.

1
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Chapter 1

Theoretical background

“Geometry does not teach us to draw these lines, but requires them

to be drawn; for it requires that the learner should first be taught

to describe these accurately, before he enters upon geometry; then

it shows how by these operations problems may be solved.”

-Isaac Newton

1.1 Point cloud

A point cloud is a collection of points in 3D space characterized by three Cartesian coordinates

describing each point. This kind of representation is common for 3D data, and it is used in

many applications, including robotics, augmented reality, and object recognition. Depending

on the sensor and the observed scene, point clouds may differ in resolution, structure, and

density. In general, we categorize them into two types:

� Structured point clouds Structured point clouds are produced by arranging the points

in a predictable way, similar to pixels in a 2D image. The point cloud can be easily

represented as a regular 3D array or a matrix. They are often easier to process and an-

alyze, since the regular grid structure allows for efficient algorithms and data structures

to be used. Structured point clouds can be obtained, e.g., from depth sensors that use

structured light or time-of-flight techniques.

� Unstructured point clouds A point cloud is unstructured when it lacks a stable, consis-

tent structure, meaning there is no apparent connection between neighboring points[65].

They can capture more detailed and complex geometry and textures, and are in general

more suited for applications that require a high level of detail, such as cultural heritage

preservation, geospatial mapping, or VR. These are often obtained from 3D scanners

using various photogrammetry techniques.

Pointclouds are in general prone to contain various imperfections[22], such as noise, outliers,

and non-uniform sampling. In this thesis, we will be predominantly concerned with the

structured point clouds that are generated by RGB-D sensors, which are devices capable of

3



4 CHAPTER 1. THEORETICAL BACKGROUND

capturing a scene’s color and depth information. Their representation is typically the same

as an image. However, in addition to RGB information, each pixel contains a depth value

representing the distance from the camera to the point in the scene. Point clouds generated

by such sensors are often referred to as depth maps, and their resolution is determined by

that of the sensor.

1.2 Back projection: from 2D to 3D

RGB-D is a data format that combines the RGB color channels with a depth value, the

distance from the camera to the corresponding point in the scene.

Given this information and knowing the intrinsic parameters of the camera, we can compute

the 3D coordinates in the camera frame of each pixel in the depth image. The intrinsics

define the relationship between the camera’s 3D coordinate system and the 2D image plane.

They include the focal length fx, fy and the optical center cx, cy.

The focal length is the distance between the camera’s image plane and the focal point, which

is the point where the light rays converge after passing through the lens.

There are two focal lengths fx, fy to accommodate the fact that the pixel density may not be

the same in both directions, horizontal and vertical. Therefore when converting values from

metric units to pixels, we need to differentiate between the two.

The optical center is where the camera’s image plane intersects with the camera’s optical

axis.

The process of converting a pixel to a 3D point is relatively straightforward.

To begin, we must convert the pixel coordinates to normalized image coordinates. These

coordinates are defined as:

u = (x− cx)/fx

v = (y − cy)/fy

We assigned a vector to each pixel that points from the camera’s center to the corresponding

point in the scene. Normalized image coordinates have the property that a point at a distance

of 1 unit from the camera center is projected to a point at 1 unit from the origin in the

normalized image plane. To obtain the 3D point, we multiply the normalized coordinates by

their corresponding depth value denoted as d.

Using homogeneous coordinates, we will get the following:

X = u · d

Y = v · d

Z = 1 · d

In order to generate a point cloud representing the 3D structure of the scene observed by the

camera, we repeat this process for every pixel in the image.
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1.3 Euclidean space

Euclidean space is an n-dimensional affine space over the real numbers, where n ∈ N [5].

However, our main focus will be on the three-dimensional Euclidean space, denoted as E3.

Incidentally, the Cartesian coordinates can be identified with E3, which we are familiar with

also as an abstraction of the physical space making it an ideal candidate1 to guide our further

reasoning about the point clouds.

Each point P in the affine Euclidean space can be identified with a point in the Cartesian

coordinate system:

P ≡ {(x, y, z) | x, y, z ∈ R}

Given two points P1, P2, we define a bound vector v⃗ as the difference between the point P1

and P2:

v⃗ = P2 − P1 = (x2 − x1, y2 − y1, z2 − z1) ∈ R3

Bound vectors are characterized by their initial and terminal point, which in our case are

denoted as P1 and P2 respectively.

The origin of the Cartesian coordinate system O is located at point (0, 0, 0). If we consider

a bound vector whose initial point is at the origin O, we get a vector characterized only by

its magnitude and direction. We will refer to such object as a free vector. A set of all free

vectors forms an associated vector space E⃗3 to E3, which is equipped with an inner product

defined as:

a⃗ · b⃗ =
n∑

i=1

aibi

where ai and bi are the components of the vectors a⃗ and b⃗ respectively. Therefore, for any

point in the Cartesian coordinate system, there exists a unique free vector whose components

are the coordinates of that point. Since the Cartesian coordinate system is also orthogonal,

it forms a natural basis for the vector space E⃗3.

Additionally, we can define a cross product between two vectors a⃗, b⃗ ∈ R3 as:

a⃗× b⃗ =

∣∣∣∣∣∣∣∣
a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

∣∣∣∣∣∣∣∣ ∈ R3

which defines a vector that is orthogonal to both a⃗ and b⃗.

These operations allow us to compute the distance between two points, areas, volumes, and

other geometric quantities and metrics, which we are going to use extensively in the following

chapters.

1Strictly speaking, physical space does not conform to Euclidean geometry, and Euclidean space approxi-

mates it only over short distances (with respect to the gravitational field’s strength), as implied by Einstein’s

theory of general relativity[40].
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1.4 Rigid object

In the context of Euclidean geometry, an object can be thought of as any geometric shape or

structure that is defined by a set of points and the relationships between them, which can be

expressed in terms of distances and angles. The object can be described by its shape, size,

orientation, and position relative to other objects or reference points.

Formally, an object is defined as an affine subspace of E3 and its associated vector space E⃗3,

sometimes also referred to as linear variety.

Furthermore, we define the deformation of an object as a transformation that does not pre-

serve the size or shape of the object. Objects that can not be deformed are called rigid

objects.

This assumption implies the following property of rigid objects:

For any two points P1, P2 ∈ P , where P is the set of points that define the object, the

distance between them is constant.

This statement implies that the size of a vector and the cross product of two vectors must

remain the same, which means that their dot product also remains the same.

1.5 Euclidean isometries

The transformations of Euclidean space that preserve distances and angles between points

and vectors are called euclidean isometries. In other words, an isometry is a transformation

that does not change the size or shape of the transformed objects. Examples of Euclidean

isometries include translations, rotations, and reflections. All Euclidean isometries form a

group, denoted as E(n), where n ∈ N is the dimension of the space. However, our main focus

in this thesis is on rigid objects. Any transformation of a rigid object describes a so-called

rigid body motion, a combination of a translation and a rotation.

t(v⃗) = Rv⃗ + T

where R is an n× n matrix and T is a translation vector.

As we mentioned earlier, such transformation must preserve the cross and dot product of any

two vectors, which results in the following:

RTR = I ∧ det(R) = 1

Where I is an identity matrix.

It implies that R is an orthogonal matrix, and since the determinant of R is 1, it excludes the

possibility of reflections. Another way to see why reflections are impossible is that they do

not preserve the handedness of objects. Therefore, we will be only concerned with a subgroup

of E(3). This subgroup is called a Special Euclidean group, denoted as SE(3), also known

under a more general term Lie group. It defines a proper rigid transformation that preserves
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the size and shape of the object, but may change the object’s position and orientation in

space.

1.6 6D pose

The origin of the Cartesian coordinate system is referred to as the world origin, and in

combination with the basis vectors of the vector space, it forms a frame of reference, also

named a world frame. However, since the position of the sensor defines our origin, we will

refer to it as a camera frame. Next, we define an object frame as a frame of reference attached

to the object. Its origin is usually located at the object’s center of mass, but it can be any

point of the object. As we have seen, rigid objects’ only degrees of freedom are their position

and orientation in space. Consequently, their position is sufficiently described by the object

frame’s position and orientation with respect to the camera frame. It is defined by the

following six parameters regarding the camera frame, also called a 6D pose:

� Position 3 coordinates of the object’s origin

� Rotation 3 Euler angles that define the object’s orientation

1.6.1 Position

Let t = (tx, ty, tz) be the position of the object’s origin in the camera frame. Then the t⃗ is a

linear displacement of the object’s origin from the camera frame’s origin.

1.6.2 Rotation

The object’s orientation is defined by the Euler angles α, β, and γ, each representing a rota-

tion around the corresponding axis.

All rotation transformations form a group, denoted as SO(3). This group is closed under

composition. Hence, any two rotations can be composed into a single rotation. However, the

composition is not commutative or nonabelian, so the rotations’ order matters.

While there exists a variety of methods for representing rotations, the matrix representation

is the most common.

The transformation can be represented by a 4x4 homogeneous transformation matrix that

encodes both the object’s translation and rotation.

The following homogeneous transformation matrix then represents the 6D pose of the object:

T =

[
R tT

0 1

]

where R is a rotation matrix and t is a displacement vector.

By representing an object’s position and orientation in this way, it becomes possible to

perform further computations fairly efficiently.
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In summary, the 6D pose of an object consists of 6 parameters that define its position and

orientation. We demonstrated one possible way to represent these parameters, but it is worth

noting that there are other representations whose suitability will depend on the particular

application.

1.7 6D pose estimation

Pose estimation is a problem of determining the position and orientation of an object in the

world, given a sensor observation. It may be a single image, a video, or, as in this thesis, a

point cloud.

There are many challenges that we are faced with when trying to solve this problem algorith-

mically. Among common obstacles are cluttered scenes, occlusions, sensor noise, variations

in lighting conditions, object appearance, and more.

According to Nejatishahidin et al.[41], there are four ways to define this problem:

� Classification This approach discretizes the rotation space and casts the 3D rotation

estimation into a classification problem. From there, we can refine the pose estimate

using, e.g., an ICP algorithm.

� Regression It treats pose estimation as a regression problem, where the goal is to

predict a continuous output (the pose parameters) from the input data.

� 2D-3D correspondences When working with 2D images, it is possible to find corre-

spondences between 2D points in the image and points in the model and then using

these correspondences to estimate the pose.

� 3D-3D correspondences It is similar to the previous class of solutions, but instead of

utilizing 2D points, we work with 3D points.

There are many ways to conceptualize the pose estimation problem, and each of them involves

using different methods and algorithms to solve the problem. In this thesis, we will take a

closer look at the 3D-3D correspondences approach.

1.8 Ground truth data

Ground truth data is a set of data representing the world’s actual state. It is usually in the

form of some metadata accompanied by a dataset. Regarding 6D pose estimation, this could

entail a collection of labels carrying information about the 6D poses of objects within the

dataset.

The ground truth data is also referred to as annotation, and the process of obtaining it is

called annotating. It is a crucial step in the creation of dataset. Ground truth data can be

obtained in several ways. According to Krig et al.[30], we can distinguish between:

� Synthetic This data is generated from computer models or renderings with predefined

labels.
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� Real- produced The data is produced by implementing a preconceived scenario in the

real world.

� Real- selected Data selected from the real world, e.g., generated by a sensor deployed

in production.

� Machine-automated annotation Feature analysis and learning methods extract fea-

tures from the data and produce the annotations.

� Human annotated A specialized software can be used which can, with the help of a

human, determine the precise location of features or objects in a scene.

� Combined Any combination of the above methods.

1.9 6D pose annotation techniques

There are several ways to annotate 6D poses, and all options mentioned in the previous

section can be applied. The most common way to annotate a 6D pose is to use specialized

software that allows the user to label the objects in the image manually. Users can paste the

3D model of the object into the image and adjust its position and orientation until it matches

the object in the image. Alternatively, they can select corresponding points in the image and

the CAD model, and the software will compute the 6D pose (e.g., using PnP algorithm[48]).

Another common step in the annotation process is to preprocess the data by auto-generating

the annotations algorithmically and then manually correcting them. Often datasets contain

images of some scene taken from multiple viewpoints, which can be leveraged to create an-

notations for one viewpoint and then project them to the other viewpoints using the known

camera parameters.

Another popular technique is to use fiducial markers, unique markers designed to be easily

detectable[61]. They are placed on the object so that the pose can be recovered. However,

this technique can be more time-consuming and not feasible when dealing with objects with

complex geometry or in real production environments.

A comprehensive review of 6D pose annotation techniques is beyond the scope of this thesis,

but in general, it usually consists of some combination of manual and automatic annotation.

1.10 Virtual reality

VR is a technological advancement that places users within a simulated setting. It has wit-

nessed increased recognition and commercial utilization in recent periods. Lewis et al.[34]

dates the inception of VR back to Morton Helig, a notable figure in cinematography, who

secured a patent for the Head-Mounted Display (HMD) in 1960. This innovative device could

present images, generate sounds, and create air currents. Helig’s subsequent development,

the Sensorama Simulator in 1962, was another apparatus trying to simulate reality.
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Further progression in VR was achieved by Ivan Sutherland’s Sword of Damocles in 1968. It

was the first HMD that facilitated the rotation of the user’s virtual viewpoint in alignment

with their physical head movements. Its semi-transparent feature also classified it as the

first system incorporating augmented reality elements. From 1970 to 1990, VR was primarily

utilized for simulations and specialized training. However, the 1990s saw considerable shifts

with the announcement of Sega VR and the deployment of Virtuality’s multiplayer VR sys-

tems. The 2010 prototype of the Oculus Rift marked another significant advancement in VR

technology. This device, offering a 90-degree field of view, established a new standard in the

realm of HMD-based VR.

The concept of VR can be dissected into four fundamental components[2]:

� Virtual environment Virtual environments are digitally designed spaces that provide

means of interaction between humans and machines. They further enhance human

perception by extending visual information to 3D and facilitating interaction with the

displayed data, which is beneficial in tasks like teleoperation in surgical simulations.

� Immersion VR immersion has two main components. There’s immersion itself, which

refers to the extent to which a VR system can accurately reproduce sensory experiences,

and secondly, presence, which describes the personal psychological response of the user

to the VR system[55]. The higher the level of immersion and presence is, the more

seamless transition between real and virtual realms becomes.

� Sensory feedback Through VR, individuals can have an embodied experience, like

maneuvering a simulated aircraft, with the system offering immediate perceptual re-

sponses.

� Interactivity A VR experience necessitates a closed feedback loop, allowing the user

to engage with the digital environment, which can react with the type of interaction

based on the simulated scenario.

As VR technology continues to evolve, several research areas have emerged, focusing on en-

hancing user experience and addressing potential challenges. A significant area of research is

locomotion in VR, which refers to the ability to move around in the VR environment. Vari-

ous techniques have been developed[34], including redirected walking[50], walking in place[33],

joystick walking, and teleportation style movement. Each technique has advantages and po-

tential drawbacks, and their development and refinement continue to be a focus of ongoing

research. Another popular research topic is the prevention of injuries[3] and sickness caused

by VR.

1.11 Conclusion

In this chapter, we have delved, among other things, into the intricacies of point clouds, rigid

objects, and 6D pose. We have explored how point clouds, structured and unstructured,

are a natural representation of 3D data and how back projection allows us to compute 3D
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coordinates from 2D images. We have also examined the properties of Euclidean space and

how Euclidean isometries preserve distances and angles in transformations. Furthermore,

we have discussed the challenges and approaches in 6D pose estimation, the importance of

ground truth data, and various techniques for 6D pose annotation. Lastly, we have touched

on virtual reality, its components, and emerging research areas. As we move forward, these

foundational concepts will guide us in exploring possible solutions to questions, we will be

faced with, in the following chapters.
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Chapter 2

Problem analysis and goals

“A problem well stated is a problem

half solved.”

-Charles F. Kettering

2.1 Problem statement

The demand for precise and efficient 6D pose annotation of RGB-D point clouds has been

driven in recent years by the expanding need for various robotics, augmented reality, and

autonomous driving applications. Despite this, developing a practical and efficient annota-

tion system remains a challenging task, and to this day, precise 6D pose annotation is an

exceptionally time-consuming and tedious process. Various methods have been proposed

e.g.[63],[18] or [29] to address this issue. These approaches range from analytical methods

to semi-automatic and fully automatic solutions that leverage machine learning algorithms.

While many of these approaches have significantly accelerated the annotation process and

enhanced the precision of annotations, the dimension reduction resulting from projecting 3D

data onto a 2D plane (computer screen) poses significant challenges in the annotation process

and is a major obstacle for professionals with limited experience using 3D software.

2.2 Problem analysis

VR technology offers a natural solution to the problem mentioned above. It allows users to

interact with 3D data directly within a 3D environment, thereby overcoming the limitations

resulting from 3D-2D projection. This interaction can mimic real-world experiences but is not

bound by the laws of physics. Therefore, VR not only facilitates more natural interactions

than a desktop environment but can also easily overcome the physical world’s constraints.

The concept of naturalism in 3D user interfaces (UI) is explored in depth in the article by

Bowman et al.[9]. The roots of 3D UI research can be traced back to the 1960s, with focused

research emerging in the 1990s alongside growing interest in VR. Two distinct design ap-

proaches for 3D interaction techniques have formed over time. The first approach prioritizes

high-interaction fidelity, striving to create a realistic and immersive user experience. The

13
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second approach, on the other hand, focuses on developing ”magic” techniques, which aim

to enhance usability and performance in three fundamental 3D UI tasks: travel, selection,

and manipulation. Natural techniques have improved performance in complex manipulation

tasks[57]. Furthermore, it has been demonstrated that it is possible to design hyper-natural

techniques that feel natural to the user and offer high levels of precision[59].

Moreover, 3D interaction methods utilizing 6-DOF (degrees of freedom) input devices have

been found to outperform traditional desktop devices, particularly in applications that re-

quire extensive manipulation[36]

Franzluebbers et al.[17] conducted a comparative study to evaluate the performance and user

preferences between a VR system and a traditional 2D system for tasks involving counting

and annotation. The study revealed that participants could complete the counting task sig-

nificantly faster when using the VR system, although the precision variance was comparable

for both systems. Interestingly, participants reported higher accuracy and efficiency when

using the VR system. Moreover, the participants favored the VR system for both tasks.

These findings suggest that VR systems not only hold the potential for enhancing efficiency

in annotation tasks but also offer a more engaging user experience.

An experiment conducted by Gruchalla et al.[21] further underscores the advantages of VR. In

this study, participants were tasked with path editing in an Immersive Virtual Environment

(IVE) and a traditional desktop setting. The results indicated that tasks were completed

more quickly and accurately in the IVE. The data also suggests that VR may be advanta-

geous for spatially complex tasks.

While VR offers significant advantages, it also presents several challenges that must be ad-

dressed. These include the absence of tactile feedback, the potential for motion sickness and

disorientation, and the need for users to familiarize themselves with new interaction tech-

niques. Motion sickness is the most critical, as it can render the application unusable for

some individuals. The exact cause of visually induced motion sickness remains unclear, but

it is currently hypothesized to result from a sensory conflict between the visual and vestibular

systems of the brain[42]. Research by So et al.[56] suggests that reducing navigation speed

within an IVE can help to mitigate it.

In summary, while VR technology holds considerable promise for enhancing the annotation

process, it is crucial to thoughtfully consider the challenges associated with the current gener-

ation of VR technology during the design phase. It will help to minimize any negative impact

on the user experience and ensure the most effective utilization of this promising tool.

2.3 Goals and solution proposal

The primary objective of this project is to create an intuitive interface within an IVE that al-

lows users to interact with point cloud data and create 6D pose annotations of objects located

in the point cloud. We aim to investigate the benefits and challenges of using VR technology

for 6D pose annotation. We hope this interface will offer researchers and practitioners across
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various fields a more natural method for collecting ground truth data, which in turn could

facilitate an easier adoption of recent advancements in AI within their respective domains.

We propose developing a web application that leverages VR technology to accomplish this

goal. This application will enable users to upload and visualize a dataset in an IVE. In the

IVE, the user can navigate, manipulate models, and annotate the 6D poses of objects within

the point cloud.

Additionally, the application will try to minimize the negative effects of VR technology in

the three main interaction tasks by utilizing the following techniques:

1. Travel Users can navigate the IVE using the Point and Teleport locomotion tech-

nique[10]. This technique, which operates at zero speed, effectively eliminates the issue

of motion sickness. Although it offers slightly less control over movement, it is an ideal

choice for this application, as the IVE can be designed so that complex movement will

not be required for the annotation task.

2. Manipulation Users can manipulate models using a 6-DOF input device, such as a

VR controller. This interaction method, often called the virtual hand metaphor, is

considered the most natural way of interacting with objects in VR[45] and takes full

advantage of 3D UI.

3. Selection To overcome the limited reach inherent to the virtual hand metaphor, users

can select objects by pointing at them with a laser pointer attached to the VR controller.

This ”magic” interaction method, known as the virtual pointing metaphor[46], extends

the user’s reach within the IVE to all visible parts of the scene.

Furthermore, to address potential privacy concerns, the application will be designed to pro-

cess all user-uploaded or generated data locally on the user’s device, eliminating the need for

server-side processing. It ensures that user data remains private and secure.

Lastly, the application will be developed using modern web technologies, making it com-

patible with all major web browsers and VR headsets. This broad compatibility allows for

greater accessibility and ease of use, facilitating the application’s availability across various

platforms.
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Chapter 3

Related works

“It’s not where you take things from — it’s where you

take them to.”

-Jean-Luc Godard

In this chapter, we will explore several projects that are relevant to this thesis. While data

annotation in VR is a relatively new field of research, numerous solutions have already been

proposed. By examining these projects, we hope to identify common challenges, effective

strategies, and potential areas for innovation in our application. However, it’s important

to note that my ability to provide a comprehensive review of these projects is somewhat

limited. Despite my best efforts, I was unable to personally test all of these applications,

and therefore I refrained from any qualitative commentary. As such, the analysis provided

in this chapter is primarily based on the information made available by the authors of these

projects, supplemented by additional resources found online.

3.1 PointAtMe

PointAtMe[62] is a web-based VR application for the annotation of 3D point clouds, specifi-

cally LIDAR scans. Since this application aims at the datasets used in autonomous driving,

it assumes temporal coherence of the data. This allows the application to use the data from

the previous frame to initialize the annotation in the current frame.

User is presented with a 3D scene containing a point cloud and a set of tools for annotation.

Above the point cloud, a screen with an RGB representation of the point cloud is displayed to

help the user better orient themselves in the scene. The central tool to control the application

lies in the user’s hand, which is represented by a virtual hand.

The user creates the annotations by inserting a bounding box around the object of interest.

These can be further accompanied by more information provided by the user.

17
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Figure 3.1: PointAtMe annotation tool[62]

3.2 Potree

Potree[53] is a WebGL[37] based library to render point clouds developed by Markus Schütz.

This open-source project allows users to visualize massive point clouds in a web browser and

stands behind many web-based applications in the field of the cultural heritage or archeology,

where 3D scans often times reach staggering sizes. There are many notable initiatives that

use Potree for rendering the scans of excavation sites or whole geographical regions.

Figure 3.2: Web rendering of a scan of the Neuchatel region using Potree[53]

3.3 Genuage platform

Genuage[8] is a VR application for the visualization, analysis, and annotation of multidi-

mensional point clouds, meaning each point contains besides its position in 3D space some
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additional information. It is an open-source project built in Unity. The application is de-

signed to be used specifically with point clouds generated by super-resolution microscopy

images, each containing millions of points. It takes advantage of dual interface consisting of a

desktop mode, where user can upload and download data and a VR mode for visualization and

interaction with the data. Among its features are various quantification and annotation tools.

Figure 3.3: Genuage platform[8]

3.4 Conclusion

In this chapter, we have examined several projects that are relevant to this thesis, namely

PointAtMe, Potree, and the Genuage platform. Both, Genuage and PointAtme, offer a unique

approach to annotating 3D point clouds and their visualization. PointAtMe is a web-based

VR application designed explicitly for annotating LIDAR scans. The application provides an

RGB representation of the point cloud to aid user orientation and uses a virtual hand as the

primary tool for controlling the application. Both elements play important roles in enhancing

the overall user experience.

The Genuage platform is designed to visualize, analyze, and annotate multidimensional point

clouds. This platform features a dual interface, with a desktop mode and a VR mode. Taking

advantage of both interfaces is the right approach for this type of application.
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Lastly, Potree, on the other hand, is a WebGL-based library that allows the visualization of

massive point clouds in a web browser and highlights the role of data structures and algo-

rithms in the development of efficient point cloud rendering.

The common shortcoming of these projects seems to be the lack of an appealing immer-

sive environment, which could make it undesirable for users to utilize these applications for

prolonged periods of time.



Chapter 4

Solution and implementation

“Sometimes, the elegant implementation is just a function. Not a

method. Not a class. Not a framework. Just a function.”

-John Carmack

4.1 Algorithms and data structures

The subsequent section will describe the algorithms and data structures relevant to the im-

plementation. We will also present an evaluation covering the pros and cons of the algorithms

implemented, along with an analysis of their appropriateness for our specific use case.

4.1.1 K-dimensional tree

The K-dimensional tree[13], or a K-d tree, is a unique data structure specifically designed

for managing points in a K-dimensional space. It is a binary tree constructed by recursively

partitioning the space into two half-spaces along a selected axis. The axis selection cycles

through the dimensions of the space.

The partitioning point is chosen as the median of the points, with smaller values stored in

the left subtree and larger values in the right subtree. Opting for the median as the parti-

tioning point ensures the tree stays balanced, although there are alternative strategies for its

selection.

A key advantage of this data structure and its common use case is to facilitate nearest

neighbor search in logarithmic time, significantly enhancing the efficiency of such operations

compared to a naive implementation.

Use-case analysis While K-d trees possess certain characteristics that render them less suit-

able for high-dimensional and non-uniformly distributed data, they are highly efficient for

use in low-dimensional Euclidean space with static data. Their utility in performing nearest-

neighbor search is particularly noteworthy.

These attributes make K-d trees an excellent fit for our specific use case since we plan to

utilize them for just that, operating on a relatively small subset of the point cloud.

The construction of a K-d-tree is outlined in Algorithm 1. The time complexity of this

algorithm is generally O(n log2 n), depending on the sorting algorithm employed, where n

21
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represents the number of points in the dataset. The space complexity stands at O(n), as
each point in the dataset must be stored within the tree.

Algorithm 1 K-d tree construction

1: function buildKdTree(points, depth)

2: if points is empty then

3: return null

4: end if

5: axis← depth mod k

6: Sort points based on the selected axis

7: median← ⌊ length(points)2 ⌋
8: node← new Node(points[median])

9: node.left← buildKdTree(points[0 : median], depth+ 1)

10: node.right← buildKdTree(points[median+ 1 :], depth+ 1)

11: return node

12: end function

4.1.2 Octree

An octree[64] is a tree data structure specifically devised for storing points within a 3D space.

The construction of an octree begins by defining the bounding box encapsulating the space

containing the points. The space is then recursively divided into eight sectors, octants, each

representing a node within the tree - hence the term ”octree.”

The leaves of the tree represent the points within the space, with each leaf containing

min(k, n) points, where k denotes the maximum number of points a leaf can hold. Therefore,

the octant is subdivided until it contains k or fewer points.

This data structure finds extensive application within computer graphics due to its efficiency

in facilitating collision detection and ray tracing operations.

Use-case analysis Octrees demonstrate high efficiency when dealing with large volumes of

data. It was also evidenced by Potree[53], where the octree structure facilitated the Level of

Detail (LOD) rendering of billions of points.

Depending on the specific use case, a potential drawback of octrees is their susceptibility to

sparsity in cases of non-uniform data distribution. The octree will be particularly useful in

our case for detecting collisions between the point cloud and objects manipulated by the user.

The construction of an octree is outlined in Algorithm 2. Generally, the time complexity of

such a naive approach to construct an octree is O(n2), where n represents the number of

points in the point set. The theoretical space complexity of an octree is O(n).

4.1.3 Z-order curve

The construction time of an octree can be significantly optimized to O(n log(n)) by leveraging

the Z-order curve[12]. This function represents a space-filling curve that effectively maps a
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Algorithm 2 Octree point insertion

1: function insertPointIntoOctree(point, octree)

2: if octree is empty then

3: octree← new Octree(point)

4: else

5: octant← find octant of point in octree

6: if octant is larger than k then split octant(octant)

7: insertPointIntoOctree(point, octant)

8: else

9: octant← add point to octant

10: end if

11: end if

12: end function

multidimensional space onto a one-dimensional space. An essential characteristic of this curve

is its ability to maintain information about the locality of points within the multidimensional

space. It is achieved in a manner that effectively couples with an octree structure built from

these points.

As a result, once the points are mapped onto the one-dimensional space, they can be sorted,

and the octree can be constructed in linear time.

We first need to map the points to positive coordinates. Subsequently, we rescale the points

to 2k, where k denotes the maximum depth of the octree.

Next, we calculate each point’s Z-order value or the Morton code. It is achieved by interleaving

the bits of the coordinates, starting from the most significant bit and proceeding to the least

significant bit.

Let us consider, for instance, a point P located in a 3D space with the following coordinates:

P = (1, 7, 2)

Px = 1 = 0012

Py = 7 = 1002

Pz = 2 = 0102

The Morton code for this point would then be:

Pmorton = 0100011002 = 14010

Subsequently, we sort the points based on their Morton code values and construct the octree.

The Z-sort simplifies the construction of an octree in two ways. Firstly, points within the

same octant are mapped to adjacent positions within the sorted array. Secondly, the octants

can be differentiated by calculating the side length of the smallest bounding box encompass-

ing both points. The interval containing the points is bounded on both sides by a larger side
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length of the respective bounding box. It provides us with complete information about the

final structure of the octree.

A significant advantage of utilizing the Z-order curve is its ease of implementation and par-

allelization.

Use-case analysis The Z-order curve proves itself highly beneficial in indexing multidimen-

sional data. It also facilitates the execution of range queries in logarithmic time when using

UB trees. In our scenario, we can employ the Z-order curve to construct the octree in

O(n log(n)) time. It represents a significant improvement, mainly when the number of points

in the point cloud is significant.

Algorithm 3 Construct an octree using Z-order curve

1: function constructOctree(points, k)

2: zOrderV alues← empty array

3: minPoint← find minimum of each dim in points

4: points← points+ |minPoint|
5: Rescale points to 2k

6: for each point in points do

7: zOrderV alue← calculate Z-order value of point

8: zOrderV alues← zOrderV alues+ zOrderV alue

9: end for

10: sortedPoints← Sort points based on zOrderV alues

11: root← construct Octree from sortedPoints, zOrderV alues

12: return root

13: end function

4.1.4 Gilbert–Johnson–Keerthi distance algorithm

The Gilbert-Johnson-Keerthi (GJK) distance algorithm[19] is a method specifically designed

for detecting collisions between two convex sets. This algorithm operates based on the

Minkowski sum[23] of two sets, A and B. The definition of the Minkowski sum is as stated

below:

A⊕B = {a+ b|a ∈ A, b ∈ B}

In the GJK algorithm, a form of Minkowski difference is used1, which is defined as:

A−B = {a− b|a ∈ A, b ∈ B} = A⊕ (−B)

The GJK is an iterative algorithm that aims to ascertain whether the origin is within the

Minkowski difference between two shapes. If the origin is indeed within this difference, it

proves that the shapes are colliding.

The algorithm initiates by calculating the support point of the Minkowski difference in an

arbitrary direction. This support point is the point that lies furthest along the given direction.

1Not to be confused with a direct inverse of the Minkowski addition.
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With each iteration, the algorithm determines if the origin lies inside the object formed by the

support points- the so-called simplex. The specific strategy employed for this point selection

is beyond the scope of this thesis. Please refer to the original paper[19] for a more detailed

understanding of the algorithm.

Use-case analysis The GJK algorithm is highly efficient for detecting collisions between

convex shapes. Even though the initial objects’ intersection test is usually performed using

the bounding volumes; the GJK algorithm can perform more precise collision detection. This

algorithm can also be used to insert geometric volumes into the octree. In general, the

time complexity of the GJK algorithm is considered to be O(log(n)), where n is the number

of vertices of the shapes. It should be noted that various factors can influence the actual

performance of the GJK algorithm. These include the specific shapes of the input objects

and their relative positions and orientations. However, the GJK algorithm often performs

well and is widely used in physics engines and computer graphics.

4.1.5 Nearest neighbor search

Nearest Neighbor Search (NNS), or similarity search is an optimization problem aimed at

determining the point(s) in a set that are most similar or proximate to a specified point.

In other words, given a set of points within a metric space, NNS aims to locate the point in

the set closest to a specified query point. The definition of ”closest” is domain-dependent and

can be decided using various distance measures. These measures can range from Euclidean

or Manhattan distance to more complex ones such as cosine similarity or edit distance.

Several algorithms can solve the NNS problem:

� Brute-force search The most straightforward strategy would involve calculating the

distance between the query point and every other point in the set, subsequently re-

turning the point that registers the shortest distance. While this approach is very

straightforward, it is unsuitable for large datasets because it has a time complexity of

O(n2), where n is the number of points in the set.

� Space-partitioning data structures To enhance the efficiency of NNS, data structures

such as K-d trees, octrees, R-trees[4], and ball trees[14] can be employed to partition

the space and reduce the search time. These methods typically work by dividing the

space into regions and eliminating regions from the search that are further away than

the currently known nearest neighbor.

� Hashing-based methods Techniques such as Locality-Sensitive Hashing[54] aim to hash

similar points into the same ”bucket.” By doing so, the search can be limited to only a

few buckets, thus reducing the time complexity.

� Graph-based methods Methods such as K-nearest neighbor graph[24] or Navigable

small world graph[35] represent the point cloud as a graph, where each point is a node

and edges connect close points. The search is then performed by navigating through

the edges of the graph.
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Use-case analysis Given the specifics of our problem, we already utilize space partitioning

data structures to detect collisions between the point cloud and objects in the environment.

Consequently, it would be beneficial if we could employ the same data structures to expedite

the nearest neighbor search as well.

We will focus on the K-d tree data structure and its application in solving the NNS problem.

On average, the algorithm performs in O(log(n)) time, where n is the number of points in

the set.

It is a back-tracking algorithm, as seen in the Algorithm 4 that details its implementation.

It is also frequently employed in many implementations of the ICP algorithm to identify the

point pairs in two point clouds due to its efficiency and simplicity. While it does have some

limitations when dealing with high-dimensional or unbalanced data, given the nature of our

data, we can leverage its properties to find correspondences between the point clouds in the

ICP algorithm.

Algorithm 4 Nearest-neighbor search using k-d tree

1: function nearestNeighbor(node, target, depth = 0)

2: if node is null then

3: return null

4: end if

5: dim← depth mod k

6: nextBranch← null

7: oppositeBranch← null

8: if target[dim] < node.point[dim] then

9: followingBranch← node.left

10: oppositeBranch← node.right

11: else

12: followingBranch← node.right

13: oppositeBranch← node.left

14: end if

15: closest ← closerNode(target,nearestNeighbor(followingBranch, target, depth +

1), node)

16: if |target[dim]− node.point[dim]| < distance(target, closest.point) then

17: closest← closerNode(target,nearestNeighbor(oppositeBranch, target, depth+

1), closest)

18: end if

19: return closest

20: end function

4.1.6 Voronoi diagram

A Voronoi diagram[1] represents a spatial partitioning into regions based on the points’ dis-

tance to a specific subset of points within the space. For instance, given a set of points called
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sites or seeds, the Voronoi diagram divides the space so that each region contains exactly

one site. Each region in a Voronoi diagram is a Voronoi cell. The boundaries between cells,

formed by line segments and vertices, are equidistant to the nearest sites. Consequently,

every point within a given region is closer to the corresponding point than to any other site.

This characteristic makes Voronoi diagrams an efficient tool for nearest-neighbor queries. To

find the nearest point (from the given set of points) to an arbitrary location in the space, one

must identify the Voronoi cell into which the location falls. The point associated with that

cell is the nearest neighbor.

There are various algorithms for computing the Voronoi diagram. However, implementing

this in a 3D space is challenging, and many potential pitfalls must be avoided to achieve a

correct result. For more detailed information about the implementation, please refer to the

paper by Ledoux[32], who provides a comprehensive explanation of the problem in much-

needed detail.

Use-case analysis The Voronoi diagram finds extensive application across various fields due

to its natural solution to nearest-neighbor search. We may also leverage this property to ex-

pedite the nearest neighbor search in our application, specifically within the ICP algorithm.

The time complexity of constructing a Voronoi diagram will depend on the specific imple-

mentation. However, the most efficient algorithms can perform in O(n2 log n) time, where n

is the number of sites, and often closer to O(n log n) in practice, given that the points are

uniformly distributed.

4.1.7 Kabsch algorithm

The Kabsch algorithm[28] was first introduced by Wolfgang Kabsch in 1976 and is utilized

to determine the optimal rotation matrix that minimizes the root mean squared deviation

between two paired sets of points. This method is commonly employed in structural bioin-

formatics to establish the optimal alignment of two protein structures. It is because the

molecules are rigid objects, and direct correspondences between atoms in the two structures

are guaranteed to exist.

Given these correspondences, we can compute their cross-covariance matrix and apply sin-

gular value decomposition (SVD). As a result, we obtain a decomposition of the matrix into

three separate matrices.

A = UΣV T

where A represents the cross-covariance matrix, U denotes the left singular vectors, and V

signifies the right singular vectors. U and V are orthogonal matrices, while Σ is a diagonal

matrix. The optimal rotation matrix R is then defined as:

R = V UT

For a comprehensive justification of why this statement is valid, please refer to the paper by

Lawrence[31], who provides an algebraic proof of the Kabsch-Umeyama algorithm[58]. Ad-

ditionally, the proper formulation of the problem was first introduced by Wahba in 1965[60],
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a problem now widely known as the Wahba’s problem.

Use-case analysis Many algorithms build upon employing the SVD decomposition to extract

data properties. In the context of this application, we use it to find the optimal rotation ma-

trix to align the model of the annotated object with the point cloud. However, the Kabsch

algorithm described in Algorithm 5 operates under the assumption that the correspondences

between the two point sets are known and exist. It is different in this application, as the

sampling of the point cloud is performed in an unsupervised manner. Therefore, we will

utilize the Kabsch algorithm only as a subroutine within the ICP algorithm, which will be

discussed in the following section.

Algorithm 5 Kabsch algorithm

1: function kabsch(P, Q)

2: rotation, translation

3: CP ← centroid(P )

4: CQ ← centroid(Q)

5: for i = 1 to n do

6: P [i]← P [i]− CP

7: Q[i]← Q[i]− CQ

8: end for

9: covMatrix← P TQ

10: U, S, V T ← SVD(covMatrix)

11: d← sign(det(V UT ))

12: rotation← V


1 0 0

0 1 0

0 0 d

UT

13: translation← CQ −RCP

14: return rotation, translation

15: end function

4.1.8 Iterative closest point

The Iterative Closest Point (ICP)[6] is a class of algorithms used to solve the registration

problem in computer vision. The registration problem involves finding the transformation

between two sets of points. Unlike the Kabsch algorithm, ICP relaxes the assumption that

the correspondences between the two point sets are known.

Since it is generally impossible to find the optimal transformation matrix without knowing

the exact correspondences, the ICP algorithm iteratively ”guesses” the correspondences and

then attempts to find the optimal transformation by minimizing the defined cost function.

The Algorithm 6 provides a high-level description of the algorithm.
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Algorithm 6 General ICP algorithm

Require: P,Q (two sets of points), maxIter (maximum number of iterations)

Ensure: P ′ (transformed point set), error (final error)

1: iter ← 0

2: error ←∞
3: while error > tolerance and iter < maxIter do

4: correspondences← identifyCorrespondences(P,Q)

5: T ← optimize(correspondences)

6: P ← applyTransformation(P, T )

7: error ← computeError(P,Q)

8: iter ← iter + 1

9: end while

10: return P, error

Each step can be implemented in various ways, leading to different variants of the ICP

algorithm. The suitability of a particular variant will depend on the nature of the data and

the available computational resources.

Use-case analysis We aim to align two rigid objects - an object’s model and the target

point cloud. We plan to employ the Kabsch algorithm as our optimization step. However,

the quality of its result will be directly proportional to the quality of the correspondences

between the two point sets. Since it is reasonable to assume that the actual correspondences

do not exist in differently sampled point clouds, there are several strategies we can employ

to identify the best possible correspondences. Generally, we can categorize them into the

following groups[51]:

� Closest distance - point to point[6] For every point within the moving point cloud,

we can identify its nearest counterpart within the target point cloud. It is the most

straightforward approach and works well if the point cloud sufficiently aligns with the

model. Nonetheless, this method shows susceptibility to variations in the sampling

density between the point cloud and the model.

� Closest distance- point to the plane Identify the closest point, and compute the dis-

tance between it and the plane defined by the closest point and its k neighbors. This

approach is more robust to differences in the sampling density of the point cloud and

the model. However, it incurs the cost of computing the plane for each point, which

may be prohibitive, especially in real-time applications.

� Closest compatible point This method is similar to the closest point method, but it

only matches points that have a normal within 45 degrees of the source normal.

� Normal shooting[11] This technique identifies the intersection point where a ray, em-

anating from the source point and aligned along its normal, meets the destination

surface.
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� Normal shooting to a compatible point Similar to normal shooting, but it only matches

points that have a normal within 45 degrees of the source normal.

� Projection[7] This method projects the source point onto the target point cloud, e.g.,

from the point of view of the target point cloud’s range camera.

� Feature matching We may also exploit features of the model to find the correspon-

dences. This approach is the most robust to differences in the sampling density of the

point cloud and the model. Numerous methods exist to identify the features, ranging

from analytical to AI-based approaches. It is usually also a go-to method in real-world

applications due to its robustness and speed.

We can further filter out invalid correspondences by the following methods:

� Distance thresholding This method involves discarding all correspondences that ex-

ceed a certain distance threshold.

� Statistical analysis[47] This technique uses statistics to reject wrong correspondences,

e.g., rejects all correspondences with a certain number of standard deviations away from

the median.

� Weights[51] In this approach, weights are assigned to each correspondence and used in

the transformation computation. This method can be combined with information about

the sensor’s accuracy, specifically the probability distribution of the distance between

the actual and measured point. It is particularly relevant for depth cameras, which are

known to have decreased accuracy at greater distances.

� Neighborhood consensus[15] This method rejects all correspondences unsupported by

a certain number of neighbors based on a specific metric.

In summary, considering that our application and all data processing are executed directly

in the browser and are intended to be compatible with a wide range of VR devices, the com-

putational cost of each method is a significant consideration. As such, our baseline method

will employ the nearest-neighbor approach to identify correspondences, and we will further

refine this selection using statistical analysis. This approach only necessitates a little addi-

tional computation beyond what is already available, making it sufficiently fast to serve as a

starting point for the human-in-the-loop version of this algorithm, which we will discuss in

the following section.

4.1.9 Human-in-the-loop iterative closest point

Human-in-the-loop (HIL) algorithms are a class of algorithms that tightly couple the strengths

of human intelligence with the computational capabilities of computers. The central idea is to

use the computer to augment human abilities in real time, enabling the computer’s actions to

complement the user’s actions through direct interaction. HIL algorithms typically operate
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in an iterative manner, where the computer and the user engage in a feedback loop until one

party decides to terminate the process. As a result, these algorithms are highly adaptable to

dynamic environments and are generally less prone to errors than their traditional counter-

parts.

To adapt the ICP algorithm to the HIL paradigm, we first need to distinguish the compo-

nents of the algorithm that can be effectively executed by the computer from those better

suited for human intervention. For example, the computer excels at performing well-defined,

computationally intensive tasks, such as computing correspondences - a task that would be

laborious for a human. Conversely, the user can give the computer a robust initial estimate of

the transformation with just a glance. Poor initial estimates are among the primary reasons

for the failure of the ICP algorithm to converge. Simultaneously, the user will serve as the

final arbiter of alignment quality and, therefore, has the authority to terminate the process

at any time.

Overall, the HIL ICP algorithm will look as described in Algorithm 4.1.9.

Use-case analysis The HIL-ICP algorithm is a key experiment in this thesis, specifically de-

signed for use within the IVE. The user can employ this algorithm in real-time to align the

model with the point cloud, thereby creating an accurate 6D pose estimation of the model.

The algorithm and the user exchange feedback through visual information. The user can see

both the target point cloud and the model’s point cloud within the IVE and manipulate the

model’s point cloud. The algorithm receives both point clouds as input, computes the corre-

spondences, and, using the Kabsch algorithm, determines the optimal transformation between

the point clouds. Subsequently, the algorithm updates the model’s point cloud within the

IVE. As a result, the user can visually assess the alignment outcome and determine whether

further adjustments are necessary. This iterative process continues until the user achieves the

desired result. While the general concept is straightforward, there are still open questions

regarding the trade-offs between the quality of correspondences and the computational cost

of the algorithm. Each iteration of the HIL-ICP algorithm must be fast enough to operate

in real time. Hence, the algorithm must compute the correspondences quickly. However,

the quality of these correspondences is crucial for the algorithm to converge to an optimal

solution. Several strategies can accelerate the ICP algorithm, some of which have already

been discussed.

� Reduce the number of input points Given our specific use case, we can filter out points

from the target point cloud significantly distant from the aligned model, retaining only

those within a certain distance threshold. The point cloud is already indexed using

an octree, which allows this operation to perform at worst in O(n) time, where n is

the number of nodes in the octree. However, the selection region will be considerably

smaller in our scenario than the entire point cloud. Therefore, this operation will be

much faster and can be used to our benefit.

� Speed up correspondences computation It is the most computationally intensive sec-

tion relative to other algorithm parts. In the best-case scenario, we need to assign each

point in the model’s point cloud to a corresponding point from the target point cloud,
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which makes the time complexity Ω(n). Therefore, it makes sense to optimize this part.

If we are successful, we can additionally use more sophisticated methods to compute

the correspondences, such as the neighborhood consensus method. Several strategies

can be used to compute the correspondences, each with its trade-offs:

– NN using K-d tree It is among the fastest methods to compute the correspon-

dences that can be used without much pre-computation- we still do need to

construct a K-d tree first to be able to perform the nearest-neighbor search in

O(log(n)) time.

– NN using octree and Voronoi diagram A method was proposed by Drost et al.[16]

to use an octree in combination with a Voronoi diagram to compute the nearest

neighbors in O(log(log(n))) time. The general idea is to use an octree to index the

regions of the Voronoi diagram and then use the octree to find the nearest neighbor

of the query point. This method performs in nearly constant time. However, it

requires considerable pre-processing; furthermore, in this case, all data processing

is done directly in the browser, complicating its implementation further. After

some initial tests, it has become clear that this method’s time and memory re-

quirements, combined with the javascript heap memory limits imposed by major

browsers, make it very problematic to implement. However, the recent release of

WebGPU[20] API, which is an API aimed at the browsers for performing com-

putations on the GPU, makes it possible to use compute shaders to perform the

pre-processing in parallel and use GPU’s memory directly, which could make this

method potentially a viable option.

– NN using feature space The idea is to extract the features from both point clouds

and then identify the correspondences by finding the nearest neighbors in the

feature space. The quality of this method is directly dependent on the quality

of the method used to extract the features. The features can be extracted using

analytical methods such as the FPFH algorithm[52], which can also be used in real-

time. Alternatively, a neural network may be trained to extract and match the

features[44], which may be a quick method. However, it requires a time-consuming

offline step in the form of training.

� Optimization step The computational cost of the SVD decomposition to identify the

optimal rotation to align two point clouds is negligible in comparison to the size of

the point cloud. It should be noted, however, that if we ever decide to optimize a

different cost function, we will have to employ a different optimization method, e.g.,

the Levenberg-Marquardt algorithm[49].

In conclusion, the HIL-ICP algorithm will be utilized within the IVE by the user to further

refine the model’s pose after the user’s initial pose estimation. The algorithm is designed to

operate in real time, but the quality of the correspondences is constrained by the compu-

tational capabilities of the user’s device. Determining the optimal strategy to balance the
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quality of the correspondences and the computational cost of the algorithm remains a subject

for future work.

Algorithm 7 Human-in-the-loop ICP

Require: P (target point cloud), Q (source/model point cloud), T (initial guess)

1: while iter < max iter do

2: Q′ ← T (Q)

3: C ← Compute correspondences between Q′ and P

4: T ′ ← Optimize T using C

5: T ← User interaction using T ′

6: if User terminates the process then

7: break

8: end if

9: iter ← iter + 1

10: end while

4.2 Frameworks, libraries, and tools

During the development of the application, several frameworks, libraries, and tools were

employed to aid in the development process. The following section provides a brief overview

of the most important ones.

4.2.1 WebXR

WebXR[38], an acronym for Web Extended Reality, is a web API. This innovative API enables

seamless interaction using a web browser with a spectrum of augmented reality (AR) and VR

devices. The WebXR Device API is the successor to the WebVR API, an experimental Web

API that could only encapsulate virtual reality. It unveils novel interfaces, such as XRView

and XRPose, empowering web applications to present content in VR and AR by harnessing

the power of WebGL[37]. The API is part of the standards defined by two W3C groups- the

Immersive Web Community Group and the Immersive Web Working Group. The application

uses this API for communicating with the user’s VR device.

4.2.2 Vue.js

Vue.js[66] is a modern JavaScript framework that helps build user interfaces. In contrast to its

all-encompassing counterparts, it allows for a gradual adoption process. Its central function-

ality concerns exclusively the view layer of the application. Combined with modern tooling

and support libraries, it enables the development of advanced Single-Page Applications. The

framework’s design philosophy lets developers describe their HTML output declaratively, di-

rectly tied to the underlying JavaScript state. It is achieved through a system that can

track changes to the JavaScript state and perform efficient updates to the DOM. Vue.js also

introduces a component composition and reuse system. This system is encapsulated in the
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concept of Single-File Components (SFCs). An SFC encapsulates a component’s template,

logic, and styles in a single file. This encapsulation facilitates modularity and reusability.

4.2.3 Three.js

Three.js[43] is a popular and widely used JavaScript library that simplifies the process of

working with WebGL[37]. WebGL is an API designed to render interactive 3D and 2D

graphics directly into web browsers. It provides a set of abstractions and utilities that make

it easier to create complex 3D scenes, animations, and interactive graphics such as:

� Scene graph Three.js provides a hierarchical scene graph that allows you to add and

manage different elements in a 3D scene, such as lights, cameras, and meshes.

� Camera It supports different types of cameras, like Perspective and Orthographic,

which can be used depending on the application’s requirements. This project renders

the scene using a PerspectiveCamera object.

� Renderer Three.js includes a variety of renderers; in our project, we use WebGLRen-

derer, which is used to render the 3D scene onto an HTML canvas element.

Three.js is a powerful tool that includes many more features than the ones mentioned above.

Please refer to the official documentation for more information.

4.2.4 Others

Among other javascript libraries used during the development of the application are:

� Point cloud processing math.js, pcl.js libraries were used for point cloud processing.

Namely, the K-d tree NN search was performed using pcl.js, and statistical analysis was

performed using math.js.

� File processing JSZip library was used for reading and writing zip archives. UPNG.js

library was used for reading PNG images.

For experiments and testing purposes, I used Python and the following libraries:

� Scientific computing SciPy, NumPy, and Matplotlib libraries were used for scientific

computing and visualization.

� Point cloud processing Open3D, PyPCL, and OpenCV libraries were used for point

cloud creation and processing.

For visualization of point clouds and creation of point clouds out of meshes, I have used:

� CloudCompare A 3D point cloud and mesh processing software.

Additional supporting libraries were used in the development. Please refer to the source code

for complete information about the libraries and tools used in the project.
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4.3 Dataset

The dataset format compatible with the application is heavily inspired by T-LESS dataset[27],

and the application was developed using it. It contains a collection of RGB-D data for

detecting and 6D pose estimation of texture-less objects. The dataset offers for every item

two kinds of 3D prototypes: a manually engineered CAD model, and a partially automated

reconstructed version. This application used CAD models, which are textureless meshes

saved in the PLY format. In addition to the original format, the dataset for this project also

requires the folder ’models pcd’ specified below. The dataset is organized into the following

folders and files:

� depth A folder that contains the depth images in the PNG format. Each file name

has the following format: dddd.png, where d stands for a single digit.

� models cad A folder containing the CAD models of the objects in the scene in the

PLY format. Each file name has the following format: obj dd.ply, where d stands for a

single digit.

� models pcd A folder that contains the point cloud of each model in the models cad

folder in the PCD format. The naming convention is analogous to the models cad

folder.

� rgb A folder that contains the RGB images in the PNG format. The naming conven-

tion is analogous to the depth folder.

� gt.yml A YML file that contains the ground truth data for the 6D pose of each object

in each frame.

� models info.yml A YML file that contains the information about the real dimensions

of the models in the models cad folder.

An example of the dataset folder may then look as follows:
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Dataset

depth

0000.png

0001.png

rgb

0000.png

0001.png

models_cad

models_info.yml

obj_00.ply

obj_01.ply

models_pcd

obj_00.pcd

obj_01.pcd

gt.yml

The application expects the geometries of models, depth values, and ground truth data to be

in millimeter units. For more details about the structure of the files and folders, please refer

to the T-LESS dataset documentation[26].

4.4 Features and UI

The main goal of this thesis is to develop an IVE that allows users to create 6D pose annota-

tions of RGB-D point clouds. To this end, I decided to implement the below-listed features

with the intention of making the application as user-friendly and intuitive as possible. Simi-

larly to the Ganauge platform, the application has a desktop and a VR mode. In the desktop

mode, the user can upload a dataset, download the annotations, and enter the VR mode. In

the VR mode, the user can annotate the dataset. It includes creating and removing annota-

tions, changing frames, and moving around the IVE.
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4.4.1 Features

� Dataset upload The user can upload a dataset as a zip file. The zip file must contain

the folders with the specified structure. The application will then parse the dataset and

display it in the 3D UI.

� Creating and removing pose annotations The user can create a pose annotation by

choosing an object and placing it in the scene. Object selection can be made by grabbing

an already present object in the scene or selecting it using a laser pointer from the

model’s menu in the IVE. By selecting the model, the annotation is initialized, and

the user can adjust its position and rotation using the controllers as an extension of

their hands. While annotating, the user can also use the HIL ICP algorithm to refine

the alignment of the model with the point cloud. Once the user is satisfied with the

annotation, they can confirm it by selecting the ’confirm’ button above the displayed

point cloud using the laser pointer. Alternatively, they can remove it by selecting

the ’remove’ button. Both actions will conclude the annotation process. In order to

prevent unwanted selections when objects overlap in the scene, only one annotation can

be created at a time. If the user wants to create the next annotation, they must confirm

or remove the previous one.

� Changing frames If no annotation is being created, the user can change the current

frame by using a laser pointer and selecting the ’next’ or ’previous’ button above the

displayed point cloud.

� Annotations download The user can download the annotations as a YML file by press-

ing the ’download annotations’ button in desktop mode. The downloaded YML file

contains the annotations for each frame in the dataset in the format specified in the

T-LESS dataset.

� Travel The user can move around the IVE by using the controllers. By pointing the

laser pointer at the ground and pressing the trigger button, the user can teleport to the

selected location. The orientation of the headset determines the orientation of the user.

4.4.2 User interface and experience

� Desktop The desktop UI contains a canvas element, where the 3D scene is rendered,

and three buttons at the bottom of the screen. The UI is displayed in figure 4.1.

1. Canvas The canvas element is the most dominant part of the desktop UI. It

displays the 3D scene in its current state.

2. Upload dataset The user can upload a dataset by pressing the ’upload dataset’

button. The button opens a file dialog, where the user can select a zip file con-

taining the dataset.

3. VR mode The user can enter the VR mode by pressing the ’enter VR’ button.
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4. Download annotations Annotations can be downloaded by pressing the ’down-

load annotations’ button. The button downloads the annotations as a YML file.

Figure 4.1: Desktop UI after uploading a dataset.

� VR The 3D scene represents the IVE. It takes the form of a rounded room to which

the user is spawned after entering the VR. The 3D art featured in the room is authored

by the artists Karolina Renkiewicz and Christy Hsu. The 3D UI has several key parts

that are shown in Figure 4.2.

1. Point cloud Point cloud is shown in the form of rescaled particles with the color

of the corresponding pixel in the RGB image. The size of the point cloud is scaled

to be comfortable for user interaction.

2. Models menu The models in the dataset are displayed in a grid structure on the

side of the room. By pointing the laser pointer at the model, the model gets bigger

and starts rotating to inform the user that they can select it by pressing the trigger

button.

3. Navigation buttons Navigation buttons are located right above the point cloud.

They can either change the frame or confirm/remove the annotation depending on

the current context.

4. Annotation panel The annotation panel is a black semi-transparent panel located

by the point cloud. It contains information about the rotation and position of the

current annotation.

5. Controllers The controllers are represented by the mesh model of the actual con-

troller, and the user is expected to use them during the annotation process. They

can grab the model in the scene by pressing the ’grab’ button on the controller if

the controller collides with it and modify its position and rotation while holding it.

Additionally, by pressing the ’A’ button on the controller, the HIL ICP algorithm

can be initiated. Lastly, the user can teleport around the scene by pointing the

laser pointer at the ground and pressing the trigger button.
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Figure 4.2: 3D UI after uploading a dataset.

4.5 Implementation design

This section provides a high-level overview of the application’s implementation design.

It is beyond the scope of this thesis to provide a detailed description of the workings of all

parts; therefore, for further details, please refer to the source code.

Since the application is client-side only, it is written in TypeScript and uses the Vue.js frame-

work.

4.5.1 Structure

The application is divided into vue components, which can be composed to form complex

UIs. Therefore, from a structural point of view, the application can be seen as a tree of

components as shown in Figure 4.3.

The tree structure is based on the dependencies of the components. Vue.js framework also

provides primitives that allow the components to communicate with each other, hence it

loosely follows the data-flow in the application as well.

4.5.2 Integration

Three key contexts must always work together: WebGL, the application, and WebXR. Let

us take a look at each of them in more detail.

� WebGL context The WebGL context renders the 3D scene onto the canvas element.

In the case of this application, it is not controlled directly but via the Three.js library.

The context is initialized by creating a Three.js Renderer object, which then receives
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and takes control of the HTML canvas element. Next, we create a Three.js Scene

object, which represents the scene graph and contains all objects that can be rendered.

The Renderer is then updated by calling its render method, which takes two Three.js

objects as its parameters- the Scene and the Camera. The Scene contains the objects to

be rendered, and the Camera defines the perspective from which the scene is rendered.

The Camera object is also part of the scene graph. The render method is called in the

requestAnimationFrame callback, which is called every time the browser is ready to

repaint the canvas.

� WebXR context The WebXR is primarily responsible for initiating, maintaining, and

closing the session with a VR device. It is initialized by calling the

navigator.xr.requestSession method from the global scope. The method returns a

promise, which resolves to an XRSession object. The XRSession object is then used to

create an XRReferenceSpace, which defines the coordinate system of the VR scene. The

XRReferenceSpace can be obtained by calling the session.requestReferenceSpace

method, which takes a string as a parameter. The string defines the type of the reference

space. In this application, the type is ’local,’ which means that the origin of the reference

space is the position of the headset when the session is created. The XRReferenceSpace

is then used to create an XRRenderState object, which in turn is used to define the

rendering parameters of the VR scene.

� Application context The application state is sustained using Pinia, a state manage-

ment library for Vue.js. In this application, it functions as a global store, which is

accessible from all components. Among other things, it is responsible for storing the

dataset, the annotations, and the current frame. It also facilitates inter-component com-

munication by providing components with information about pressed buttons, selected

models, and transformation matrices.

The application is served by Vite, a web development build tool that provides a development

server. Since the WebXR requires a secure connection, the application must be served over

HTTPS protocol. The development server is therefore configured to use a self-signed certifi-

cate, which is generated on the first run of the application and consequently any device that

has access to the network can run the application.

4.6 Conclusion

That wraps up the overview of the application’s implementation design. We explored the

challenges of developing a VR application and the design decisions we made along the way

to overcome them.

In the process, we developed a web-based VR application that allows the user to annotate

6D poses of objects in a point cloud within IVE. The application is designed to be intuitive

and easy to use.

Some obstacles, such as the trade-off between the performance and robustness of the HIL-ICP



42 CHAPTER 4. SOLUTION AND IMPLEMENTATION

algorithm, we haven’t satisfactorily overcome and require further research.

In the last chapter, we will describe and perform the evaluation of the application and discuss

the results.



Chapter 5

Evaluation

“Pay attention to what users do, not

what they say.”

-Jakob Nielsen

In order to evaluate the application, we will conduct a small user study. The study will be

divided into two parts- qualitative and quantitative.

5.1 User study

The qualitative part of the study will evaluate the application’s usability, and the quantitative

part will compare the accuracy and speed of creating the annotations in this application to

an existing desktop solution. The study will be conducted on a small group of people, who

will be tasked to correct the annotations in ten frames of the T-LESS dataset.

5.1.1 Experiment design

� Participants The participants will be uniformly selected with respect to their techni-

cal ability and experience, aged between 18 and 40. There will be 5 participants in total.

� Task The participants will be tasked to correct annotations in ten frames of the T-

LESS dataset - five in the desktop application and five in the VR application. The

annotations will contain errors in position and rotation but not in the object type.

Therefore, the participants will only have to correct the position and rotation of created

annotations and not create new ones. The objects and frames supposed to be annotated

will be different for VR and desktop. The setup will be the same for all participants.

� Environment The experiment will be conducted in a quiet room with a computer

and a VR headset. The computer will be equipped with a monitor, keyboard, and

mouse. The selected desktop application is Pose Annnotator Toolkit[39], and the VR
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application is the one developed in this thesis. The VR headset will be Pico 4, and the

computer will be HP Probook 470 G5.

� Procedure First, participants will be able to familiarize themselves with both applica-

tions and the task. Once they feel comfortable working with the respective application

and confirm that they understand the task ahead, they will be able to go through the

frames without annotations. Then, they will be presented with the frames with annota-

tions and the core experiment will begin. They will start by correcting the annotations

in one of the applications and then switch to the other. The order of the applications

will be randomized for each participant. While annotating in the VR application, the

participants will be standing and able to move around the scene. In addition, the VR

session will be recorded for later analysis.

� Quantitative measurements The participants’ performance will be measured in both

applications regarding the time spent on the task and the accuracy they were able to

achieve.

– Accuracy There are many ways to measure the accuracy of the 6D pose estima-

tion, and we will use the same technique as in the T-LESS dataset[25]- the average

minimum Euclidean distance between points of the ground truth and estimated

pose.

e = avg
x1∈M

min
x2∈M

∥∥∥(Rx1 + t
)
−
(
R̂x2 + t̂

)∥∥∥
2

The average error e is computed both for the original and corrected annotations.

The error reduction per annotation is then calculated as the difference between

the average original and average corrected error. Therefore, the metric m used to

evaluate the precision of the annotation process is defined as:

m =
eoriginal − ecorrected

eoriginal
· 100

and describes the percentage of error reduction per annotation.

– Time The time measurement will start when the participant initiates the first

annotation and stop when they confirm the last. Finally, the average time per

annotation in seconds will be calculated.

� Qualitative measurements The participants will be asked to complete a questionnaire

after the experiment. The questionnaire will contain questions about participants’ ex-

perience with the applications and their preferences. It is part of the appendix 5.1.3.

The main goal of the questionnaire is to assess which application the participants pre-

fer and feel more comfortable working in. Each question in the questionnaire will be

evaluated with a score of -1, 0, or 1. The score -1 means that the participant prefers

the desktop application, 0 means that the participant has no preference, and 1 means

they prefer the VR application. Since there are five questions, the maximum score is 5,

and the minimum is -5. Furthermore, we will analyze the participants’ behavior in the

VR application from the recorded sessions and try to identify any usability issues.
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� Ethics The participants will be informed about the study’s purpose and the session’s

recording. This study will not process personal information besides the data generated

during the experiment, and that will be used solely for the purpose of this study. The

participants can withdraw from the study at any time.

5.1.2 Hypotheses

1. H1 The average time of creating an annotation in the VR application is lower than in

the desktop application.

2. H2 The average error reduction per annotation is higher in the VR application than

in the desktop application.

3. H3 The participants prefer annotating using VR over the desktop setting.

5.1.3 Results

The experiment was conducted on 6 participants, and 1 participant was invalidated. First,

we will look at the results of the quantitative part, then analyze the results of the qualitative

part and finally discuss the shortcomings of the study and summarize the results.

� Quantitative results The results are summarized in the table 5.1. The results show

that the participants could correct the annotations faster in the VR application than

in the desktop application. Also, the accuracy of the annotations was higher in the VR

application. The results confirm the first two hypotheses- H1 and H2.

VR Desktop

Participant Avg. time (s) Error reduction- m (%) Avg. time (s) Error reduction- m (%)

1 38 97.740 134 89.225

2 42 98.057 181 85.793

3 47 97.883 213 86.082

4 44 97.640 174 93.545

5 39 98.074 227 90.531

Table 5.1: Results of the quantitative study

� Qualitative results The questionnaire results are summarized in the table 5.2. The

results show that the participants preferred the VR application over the desktop appli-

cation and confirm the third hypothesis- H3.
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Participant Questionnaire score

1 5

2 5

3 5

4 5

5 5

Table 5.2: Results of the questionnaire administered after the experiment

Furthermore, we analyzed the participants’ behavior in the VR application from the

recorded session and identified some usability issues. The participants had problems

with the following actions:

– Object identification A common issue was with identifying the objects in the

point cloud. That can be attributed to the T-LESS dataset containing textureless

objects that are difficult to identify if the person is unfamiliar with them.

– Movement The participants had problems with minor movements in the scene.

When they struggled to reach some object, they had tendencies to make physical

movements instead of using a controller. A possible explanation may be that the

point and teleport locomotion strategy is not ideal for this, and the participants

were trying to compensate for that with physical movement.

– Annotation creation Many users kept forgetting to confirm the annotation after

creating it. That may be caused by the confirmation button’s position, which is

not in the user’s field of view, hence creating an additional cognitive load and,

consequently, unnecessary friction during the annotation process.

� Discussion The experiment results show that the participants could correct the an-

notations faster and more accurately in the VR application than in the desktop appli-

cation. Furthermore, the participants preferred the VR application over the desktop

application. However, the study has some shortcomings. First, the sample size is small.

Second, the desktop application does not support some common UX features for 6D

pose annotation, which may have influenced the results favoring the VR application. On

the other hand, the objects annotated in the desktop application were easier to identify

since they had texture. Lastly, some participants did not finish the experiment in the

allocated time using the desktop application, therefore not annotating all the objects.

To summarize, the results strongly suggest the superiority of the VR application over

the desktop application and are in line with the study conducted by Franzluebbers et al.

Finally, all hypotheses were confirmed, and we may conclude that the VR application is

a viable alternative to the desktop application and can be used for 6D pose annotation.



Conclusion

This thesis presented the design and evaluation of a web-based VR application for 6D pose

annotation of RGB-D point clouds. We have successfully built an application that leverages

the immersive and interactive nature of VR, to improve the speed, accuracy, and comfort of

annotating 6D poses. The final user study was designed to evaluate our application in these

aspects. We hypothesized that the VR application would outperform a conventional desk-

top application. The results confirmed these hypotheses. While some usability issues were

noted, including difficulties in object identification and navigation, these can be addressed

in future research. The overwhelmingly positive feedback indicates that the benefits of VR

may outweigh the initial learning curve, novelty factor, and other concerns typical for any

new technology or interface.

We also implemented a human-in-the-loop version of the ICP algorithm. This approach also

shows promising results but requires further research to address the algorithm’s robustness

and scalability issues.

It is also important to acknowledge the limitations of this thesis. A larger sample size and

feedback from more expert participants would undoubtedly provide a more robust and nu-

anced understanding of the VR application’s efficacy. Additionally, the solutions for the VR

platform require users to have access to a VR headset and, in some cases, a VR-ready com-

puter, which is far from ubiquitous. Moreover, the benefits presented in this thesis may be

less pronounced in comparison with mature desktop solutions.

In conclusion, this thesis has made a contribution to the field of 6D pose annotation by show-

ing that employing VR satisfactorily overcomes hurdles caused by 3D-2D projection in the

annotation task, and it is a viable alternative to traditional desktop-based methods. We hope

that this work will inspire continued exploration into VR applications and promote further

adoption of VR across various fields of research and industry.
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Appendix A: User study questionnaire

5.2 Questionnaire

1. In which application do you find it easier to work?

2. Which application is your preferred one to work in?

3. In which application do you think you completed your work faster?

4. In which application do you find your work more accurate?

5. In which application was achieving accuracy easier for you?
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