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Abstrakt

Cielom tejto bakalarskej prace je vyhodnotit sémantickit podobnost slovnych péarov
pomocou vektorovych reprezentécii slov a tak pomdct pri vyhodnocovani psycholog-
ickych experimentov sktimajicich sémanticki pamét a vybavovanie pojmov. V tejto
praci porovnavam statické embeddingy slov generovanych pomocou Word2vec a kon-
textualne embeddingy generovanych pomocou Slovak BERT, aby sme zistili, ktoré
st vhodnejsie na vyhodnocovanie sémantickych podobnosti. Pouzila som tri rozne
metody na vyhodnotenie sémantickej podobnosti slovnych parov. V prvej som vyhod-
notila euklidovské vzdialenosti a kosinusovi podobnost embeddingov slovnych parov a
porovnali sme priemerné vzdialenosti sémanticky stuvisiacich a nesuvisiacich slovnych
parov. Druhé& metoda spocivala v implementécii viacvrstvového perceptronu na klasi-
fikiciu suvisiacich a nesuvisiacich slovnych parov. V tretej metode som pouzila dalsi
viacvrstvovy perceptron na klasifikiciu slov podla ich sémantickej kategorie. Prva
kapitola poskytuje prehlad o relevantnych konceptov, ako st umelé neurénové siete,
word2vec, Slovak BERT a iné. f)alej popisujem pouzité metdédy na vyhodnotenie
sémantickej podobnosti, a predstavujem vysledky préce. V zéaverecnej casti préce

porovnavam vysledky, pricom navrhujem aj potencidlne oblasti dalsicho vyskumu.

KTacové slova:  vektorova sémantika, lexikalna sémantika, statické embeddingy, kon-

textudlne embeddingy, verbéalna plynulost



Abstract

This bachelor’s thesis aims to evaluate the semantic similarity between pairs of words
using vector representations in order to assist in evaluating psychological experiments
that investigate semantic memory and concept recall. This work compares the effec-
tiveness of static embeddings, generated by Word2vec, and contextual embeddings,
generated by Slovak BERT, to identify appropriate word representations for evaluat-
ing semantic similarity. Three different methods were used to evaluate the semantic
similarity of word pairs. The first method involved evaluating the Euclidean distances
and cosine similarity of the embeddings and comparing the average distance of asso-
ciated and dissociated word pairs. The second experiment involved implementing a
Multilayer Perceptron (MLP) to classify associated and dissociated word pairs. The
third method used another MLP to classify the words according to their category. The
first chapter provides an overview of relevant topics, such as Artificial Neural Networks,
word2vec, Slovak BERT, and others. Next, I describe the methods used to evaluate
semantic similarity and present the results of the study. The final part of the work

compares and discusses the results, suggesting potential areas for future research.

Keywords: vector semantics, lexical semantics, static embeddings, contextual em-

beddings, verbal fluency
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Introduction

The study of semantic memory and concept recall is an essential aspect of cognitive
psychology, as it provides valuable insights into the nature of human memory and lan-
guage processing. In psychological experiments, participants are required to generate
verbal responses to verbal stimuli based on certain rules, which results in a set of word
pairs. These word pairs are in the form of a stimulus-response relationship and are
used to evaluate the semantic similarity between pairs of words.

The aim of this work is to evaluate the semantic similarity between pairs of words
based on the similarity of vector representations of verbal responses. I used two types
of embeddings in my study: static and contextual embeddings, discussed in Section 1.2
and Subsection 1.6.2.

I conducted three experiments to evaluate the effectiveness of using vector semantics
in evaluating the semantic similarity between pairs of words. Firstly, I calculate the
Euclidean distances between the embeddings of words and compare the average distance
of the associated and dissociated word pairs. Secondly, I implemented a Multilayer
Perceptron, presented in MLP, presented in Subsection 1.1.2, to classify the similarity
of word pairs. Thirdly, I implemented an MLP, which classified the words according
to their category.

Overall, this thesis has important implications for the fields of human sciences
dealing with semantic similarities of textual data, as it highlights the potential of using
vector semantics in the evaluation of semantic memory and concept recall.

I have structured my work into distinct chapters, each focusing on specific aspects.
In Chapter 1, I explore the topics that hold relevance to my research. The methodolo-
gies employed to evaluate semantic similarity are explained in detail in Chapter 2. The
outcomes and findings of my research are presented in Chapter 3. In the concluding
sections of my work, specifically in Sections 3.3 and 3.3, I engage in a comprehen-
sive comparison and critical analysis of the obtained results. Additionally, I discuss

potential areas for future research and exploration.
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Chapter 1

Related work

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems that are inspired by the
structure and function of the human brain. ANNs have become increasingly popular
in recent years due to their ability to learn complex patterns and make accurate pre-
dictions on a wide range of tasks, such as image classification, speech recognition, and
natural language processing. In this chapter I write about the basic structure of ANN,

training methods and optimization, based on [6] and [24].

The structure of ANNSs is based on interconnected nodes called neurons, which are
organized into layers. These artificial neurons are conceptually derived from biological
neurons in the human brain, which receive and transmit electrical signals. In ANNs,
each neuron receives inputs from neurons in the previous layer, processes them using
weights, and sends output signals to neurons in the next layer. The weights determine
the impact of each neuron on the output of the next layer, and they are updated during

the training process to optimize the network’s performance.

1.1.1 Perceptron

The perceptron is a fundamental building block of neural networks. It is a simple
mathematical model of a biological neuron, inspired by the way neurons in the brain
work. The perceptron takes a set of inputs, applies weights to them, and produces an

output based on a defined activation function.

The perceptron model was first introduced by Frank Rosenblatt in 1957 [19]. It
served as the basis for the development of more complex neural network architectures,

including the multi-layer perceptron (MLP).

3
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1.1.2 Multi-Layer Perceptron (MLP)

The multi-layer perceptron (MLP) is a fully connected feedforward artificial neural
network [24]. It extends the basic concept of the perceptron by incorporating multiple
layers of interconnected neurons. An MLP typically consists of an input layer, one or
more hidden layers, and an output layer. Each neuron in a layer is connected to all
the neurons in the subsequent layer, allowing information to flow forward through the

network during the training and inference processes.

Qutput layer

Hidden layer

Input layer

Figure 1.1: An MLP with a hidden layer of 5 hidden units. [24].

Batch refers to a subset or group of input examples that are processed together
during training. Instead of processing the entire dataset at once, it is common practice
to divide the dataset into smaller batches and process them sequentially.

Let see an example: the matrix X € R™ ¢ denotes a batch of n input examples,
each having d input features (d being 4 in the case of the example figure 1.1).

For the MLP with one hidden layer (as is our example 1.1) with A hidden units,
the outputs of the hidden layer are denoted by H € R™". By having both hidden
and output layers fully connected, the weights W) € R¥" and biases b)) € R*" for
the hidden layer, as well as the weights W®) € R"*? and biases b(® € R for the
output layer can be obtained. This enables us to compute the outputs O € R"*? of
the one-hidden-layer MLP as follows:

H=XW +b® 0=HW® 1 b®. (1.1)

It can be proven that simply adding a hidden layer does not change the fact that
the model can only approximate affine functions using linear operations (for a detailed

explanation and proof, refer to [24]).
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Therefore, it is expected to use a non-linear activation function, denoted by o,
which is applied to each hidden unit after the affine transformation. The outputs of
activation functions are called activations. With activation functions in place, it is no

longer possible to collapse our MLP into a linear model:

H=0(XW 4 b)) 0=HW®? 4 b, (1.2)

Because each row in X corresponds to an example in the batch, The activation
function o is defined to be applied to the inputs of each row individually, i.e., one

example at a time, as specified in [24].

1.1.3 Activations

Activation functions play a key role in determining whether a neuron should be ac-
tivated or not, based on the weighted sum of inputs plus a bias term. They are
differentiable operators that transform input signals to outputs, with many of them
adding non-linearity. Given their importance to deep learning, it is useful to examine

some commonly used activation functions.

Sigmoid Function
The sigmoid function [24] is a commonly used activation function in artificial neural
networks. It maps the input values to outputs between 0 and 1, hence it is often

referred to as a squashing function.

1
14 e 2

Sigmoid activation functions are mostly applied on output units for binary classifi-

sigmoid(z) =

(1.3)

cation problems, where outputs are interpreted as probabilities.

Tanh Function
Similar to the sigmoid function, the hyperbolic tangent (tanh) function [24] also squashes

its input values, mapping them to the range between -1 and 1.

ef—e 1 —e 2
tanh(z) = pp— =1 T

The function is similar in shape to the sigmoid function, but it has point symmetry

(1.4)

about the origin of the coordinate system and is bipolar in nature. This means that it
can both activate and inhibit certain neurons. While the sigmoid function is commonly
used as an activation function for output layers in binary classification problems, the
tanh function is more frequently utilized in hidden layers due to its ability to model

complex non-linear relationships between input and output.
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ReLU Function

One of the most widely used activation functions in ANN is the Rectified Linear
Unit (ReLU) because it is both easy to implement and performs well on many predictive
tasks. ReLLU is a simple non-linear transformation where the output is defined as the
maximum of the input element and 0. It is a popular choice due to its simplicity and

good performance.
Relu(z) = maz(0, x) (1.5)
Softmax function

The softmax function is commonly used in the output layer of machine learning
models [24]. It takes a vector x of n real numbers and transforms it into another
vector where all components are in the interval (0, 1) and their sum equals one. This
is done by normalizing the input vector divided by the sum of the exponential of
the input variables. The resulting components can be thought about as a probability
distribution, because their sum equals one. The function is defined with the following
equation:

Softmax(z;) = G (1.6)
>_; exp(x;)

where x; are the components of vector x from z; to z,, and j going through all

elements.

1.1.4 Forward Propagation

Forward propagation is the process of calculating the output of a neural network given
an input|6] [24]. During forward propagation, the input values are multiplied by the
weights of the first layer, then a non-linear activation function is applied, and this
process is repeated for each layer until the final layer produces the output.

Let us look at this process step-by-step:

The input example is x € R?, then the intermediate variable is
zZ = W(I)x,

where W) € R4 is the weight parameter from the hidden layer. The activation

function ¢ is then applied, resulting in the hidden activation vector of length h,

h = ¢(z).

The output h of the hidden layer is also an intermediate variable.
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Given the example shown in Figure 1.1, assuming that the parameters of the output
layer correspond to a weight matrix W® e R%" the output layer variable o with a

vector of length ¢ can be obtained as follows:
o=W®h,

The forward propagation step is performed for each input in the training dataset
during the training. The output is compared to the expected output, and the difference
between the two is used to adjust the weights and biases of the network in the backward

propagation step.

1.1.5 Loss functions

The goal of a loss function [6] is to measure the discrepancy between the predicted
output and the true output. The loss function provides feedback to the optimizer to
update the model parameters in a way that reduces the error.

Two popular loss functions for binary classification tasks are Binary Cross Entropy
and Cross Entropy Loss.

Binary Cross Entropy Loss [6] is used when there are only two classes, such as in a
binary classification problem. The Binary Cross Entropy Loss function can be defined

as:

Lpce(9,y) = —ylog(y) — (1 —y)log(1 — 9) (1.7)

where g is the predicted probability of class 1 and y is the true label, which is either 0
or 1.

Cross Entropy Loss [6] is used when there are more than two classes. The Cross

Entropy Loss function can be defined as:

Leg(9,y) = — Z yi log (1) (1.8)

where ¢ is the predicted probability distribution over C classes and y is the true label,

which is a one-hot vector of length C'.

1.1.6 Backpropagation

The main goal of backpropagation is to modify the parameters of a neural network
in order to improve its predictions and make them better match the ground truth
data. Backpropagation is a technique used to compute the gradient of neural network
parameters, which enables this parameter modification.

In supervised learning, the term "ground truth" refers to the correct or true values

of the target variable. It represents the actual or desired output that the neural network
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aims to approximate or predict. During the training phase, the network is provided
with input data along with corresponding ground truth values.

Backpropagation involves traversing the network in a reverse order, starting from
the output layer and moving towards the input layer using the chain rule from calculus.
This algorithm stores any intermediate variables (partial derivatives) needed while
computing the gradient with respect to specific parameters. This gradient is then used
to update the weights and biases in the opposite direction of the gradient, with the

goal of reducing the loss function.|24]

1.1.7 Optimizers

Stochastic gradient descent (SGD) [6] is a popular variant of the gradient descent
optimization algorithm used for training deep learning models. Gradient descent is a
general optimization algorithm that aims to find the minimum of a given function by
iteratively adjusting the parameters. However, in the context of deep learning, it is
often infeasible to feed the entire training dataset into the model at once due to its
size.

In stochastic gradient descent, the optimization process is performed on small sub-
sets of the training data called mini-batches. Instead of computing the gradients of
the loss function with respect to the model parameters on the entire dataset, SGD
computes the gradients on a randomly selected mini-batch at each iteration, and then
updating the parameters in the opposite direction of the gradient to minimize the loss.
Despite its simplicity, SGD is still widely used due to its efficiency and effectiveness in
many cases.

However, there are some limitations to SGD, such as its tendency to get stuck
in saddle points or plateaus, and its sensitivity to the choice of learning rate. To
address these issues, researchers have proposed various improvements to SGD, such as
momentum, Adagrad [5], RMSprop [20], and Adam. In the next Section, I describe

the Adam[10] optimization technique, that I used in my work.

1.1.8 Adam

Adam (adaptive moment estimation) is a first-order gradient-based optimization algo-
rithm introduced by Kingma et al.[10]. This method combines the strengths of two
commonly used optimization techniques: AdaGrad [5], which is effective for dealing
with sparse gradients, and RMSProp [20], which performs well in non-stationary and
online settings.

Adam [24] utilizes exponential weighted moving averages, also known as leaky av-
eraging, to estimate both the momentum and the second moment of the gradient. In

other words, it employs state variables to track and update these estimates.
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vy < Bivier + (1= B)g, (1.9)

Sy« Pasi—1 + (1 — 52)&2- (1.10)

The weighting parameters 3; and 5 are non-negative and commonly set to values
such as 1 = 0.9 and (5 = 0.999. It is worth noting that the variance estimate changes
at a much slower rate compared to the momentum term. When initializing vy and s0
as zeros, there is an initial bias towards smaller values. To address this bias, we can
utilize the fact that > i = 08" = ll%%t for re-normalization purposes. Consequently,

the normalized state variables are expressed as follows.

~ Vi St
Vi = .
1B 14

With the accurate estimates available, the update equations can be written. First,

and §; = (1.11)

the gradient is rescaled in a manner similar to the approach used in RMSProp [20],

resulting in the expression:

/ UAX:

87 a1 e

In contrast to RMSProp, the update operation relies on momentum instead of

(1.12)

the gradient directly. Once all the components are ready, the updates can be easily

calculated in a simple manner, following a straightforward update formula.

Xp ¢ X1 — &) (1.13)

1.1.9 Generalization

Generalization in machine learning refers to the ability of a model to make accurate
predictions on new, unseen data, beyond the data it was trained on. It is the ultimate
goal of machine learning, where the purpose is not only to fit the training data but also
to discover underlying patterns that enable the model to make accurate predictions
on new, unseen data. In deep learning, generalization is a crucial challenge due to
the complexity of the models and the high dimensionality of the data. While the
theory of deep learning is still evolving and far from a comprehensive account of both
optimization and generalization, practitioners have developed a range of techniques
and heuristics that can help to produce models that generalize well in practice. These

methods are presented in Subsection 1.1.10.
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1.1.10 Overfitting

Overfitting occurs when the model learns to fit the training data too closely and fails to
generalize well to new, unseen data. This can happen when the model is too complex
or when it is trained for too many epochs, resulting in a model that is too specialized
to the training data and unable to capture the underlying patterns in the data. As a
result, the model may perform very well on the training data but poorly on the test
data, leading to a large generalization gap.

There are several methods that can be used to address overfitting. These methods

include weight decay, dropout and early stopping.

Weight decay Weight decay adds a penalty term to the loss function that the model
is trying to minimize. This penalty term is proportional to the square of the weights
in the model, and it encourages the model to use smaller weights. The mathematical

equation for weight decay is:
A 2
L(w,b) :£—|—§||w|| (1.14)

In this equation, £ is the original loss function, A is the weight decay coefficient and

||w]||? is the norm of the weight vector.

Dropout Dropout works by randomly dropping out (setting to zero) a proportion of
the neural activations in a layer during training. The dropped out neurons are selected
at random, with a given probability, typically around 0.5. With dropout probability

p, each intermediate activation A is replaced by a random variable A’ as follows:

0 with probability p
h = (1.15)
l%p otherwise

Early stopping Early stopping constrains the number of epochs of training. During
the training, the performance on validation data is monitoring, usually by checking
it once after each nth epoch. The training stops, when the validation error has not

decreased by more than some small amount € for some number of epochs.

K-fold cross-validation If we have limited training data, it may not be possible
to set aside enough data for a proper validation set. One commonly used technique
to address this issue is K-fold cross-validation [24]. This method involves dividing the
original training data into K subsets that do not overlap. The model is then trained
and validated K times, with each training round using K-1 subsets for training and a

different subset for validation.
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Figure 1.2: Influence of model complexity on underfitting and overfitting [24].

1.2 Word2vec

In this Section, I will discuss pre-trained word representations, such as Word2vec,
according to studies [15] and [14]. Word2vec representations are commonly used in
NLP pipelines to improve their performance. These pre-trained representations pro-
vide distributional information about words that can improve the generalization of
models learned on limited amount of data. The typical method for obtaining word
representations is through log-bilinear models trained using either the skip-gram [14]
or continuous bag-of-words (CBOW) [14] architectures, which are commonly imple-
mented in order to obtain word vectors. These models are trained on large unlabeled
corpora of text data, and capture statistical information from vast sources of data.

To improve the quality of the resulting word vectors, several modifications have been
made to the standard word2vec training pipeline. These include position-dependent
features and phrase representations. These modifications have been evaluated on var-
ious benchmarks such as syntactic, semantic, and phrase-based analogies, rare words
dataset, and as features in a question-answering pipeline [15].

The CBOW [15] model learns to predict a target word based on its surrounding
context. The context is defined as a symmetric window that includes all the adja-
cent words. In other words, given a sequence of T" words wq, ws, ..., wr, the CBOW
model aims to maximize the log-likelihood of the probability of the words, given their

surrounding context, i.e.:

ZIOgP = (w|Cy) (1.16)
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where C, is the context of the ¢-th word.
The Continuous Skip-gram Model [14] is similar to C BOW model. However, in-

stead of predicting the present word based on its surrounding context, the skip-gram
model takes each current word as input and feeds it into a log-linear classifier with a
continuous projection layer. The goal is to predict words that appear within a certain
range both before and after the current word. Increasing the range improves the quality

of the resulting word vectors, but it also increases the computational complexity.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
wit-2) wi(t-2)
w(t-1) wi(t-1)

.\sum /
S w(t) wi(t)  E—
wit+1) 7 \‘ w(t+1)
wit+2) w(t+2)
CBOW Skip-gram

Figure 1.3: CBOW and Skip-gram models architecture [14].

1.3 Transformer

Recurrent neural networks, including long short-term memory |7| and gated recurrent
neural networks [3|, are commonly used for sequence modeling and transduction tasks
such as language modeling and machine translation. Researchers have continued to
improve these models and explore new architectures. However, these models are se-
quential, which limits parallelization within training examples and becomes critical at

longer sequence lengths.

To address this issue, the Transformer [22] model was proposed. It relies entirely
on a self-attention mechanism to draw global dependencies between input and output
sequences, instead of recurrence. This allows for significantly more parallelization and

achieves state-of-the-art results in translation quality with a shorter training time.
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Architecture of the transformer

Nowadays, competitive neural models [22] for sequence translation have an encoder-
decoder structure. The encoder maps an input sequence of symbols to continuous
representations, while the decoder generates an output sequence one symbol at a time,
using the previously generated symbols as additional input. The Transformer follows
this structure, using self-attention and fully connected layers for both the encoder and
decoder. This is shown in Figure 1.4, where the left half represents the encoder and
the right half represents the decoder. The specific variant of the Transformer model I

employed in my experiment is the encoder-only transformer [9].

The encoder in the Transformer model consists of six identical layers. Each layer
has two parts: a multi-head self-attention mechanism and a simple, MLP defined in
Section 1.1.2. Residual connections are employed around each sub-layer, followed by
layer normalization. The output of each sub-layer is added to the input to facilitate
residual connections. All sub-layers in the model and embedding layers produce outputs

of a fixed dimension to enable these connections.
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(shifted right)

Figure 1.4: The architecture of the Transformer - model from [22]
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1.4 BERT

The paper, titled "BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding" [4], introduces a language representation model called BERT
(Bidirectional Encoder Representations from Transformers). Unlike previous language
models, BERT is designed to pretrain deep bidirectional representations from unla-
beled text by jointly conditioning on both left and right context in all layers. This
approach enables BERT to be fine-tuned for a wide range of tasks, such as question
answering and language inference, with just one additional output layer, without sub-
stantial task-specific architecture modifications. BERT is exclusively an encoder in the
Transformer model because its main objective is to generate a language model.

The model is first pre-trained on unlabeled data over different pre-training tasks.
One of the two tasks was masked language modeling, which involved randomly masking
a certain percentage of the input tokens and then predicting the masked tokens. The
second task was Next Sentence Prediction (NSP), which involve predicting whether a
given sentence was the actual next sentence in a pair of sentences or a random sentence
from the corpus, and helped the BERT model understand the relationship between two
sentences.

After pretraining, the model can be fine-tuned using end-task labeled data. This
process is simple and efficient due to the self-attention mechanism in the Transformer
that enables the model to handle various downstream tasks. The input and output
layers are plugged into BERT for each task, and all parameters are fine-tuned end-to-
end. Fine-tuning is less expensive compared to pre-training.

The architecture of the model is a bidirectional Transformer encoder with multiple
layers, which is based on the original implementation explained in the paper [22] BERT
comes in two sizes: BERTy, and BERT}4rge. BERT)s has 12 Transformer blocks, 12
self-attention heads, and 110 million parameters, while BERT},4,4. has 24 Transformer

blocks, 16 self-attention heads, and 340 million parameters.

Input/Output Representations

The input representation of BERT is able to handle both single sentences and pairs
of sentences in one token sequence. Each sequence starts with a special classification
token (|CLS]) and is separated by a special token (|[SEP]). A learned embedding is
added to every token indicating whether it belongs to sentence A or sentence B. The
final embedding is constructed by summing the corresponding token, segment, and
position embeddings as seen on Figure 1.5. The final embeddings go through deep
bidirectional layers to produce the resulting output. In BERT, the output comprises
hidden state vectors, representing each token in the input sequence with a fixed hidden

size.
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Figure 1.5: The representation of the BERT input. The input embeddings are
the sum of the token embeddings, the segmentation embeddings and the position
embeddings. [4]

1.5 RoBERTa

RoBERTa (Robustly Optimized BERT Approach) is a transformer-based language
model that was developed by Liu et al. [12]. This model is based on BERT released by
Jacob Devlin et al.[4]. In their study, Liu et al. conducted a replication of the BERT
pre-training approach with a focus on the effects of hyperparameter tuning and training
set size. They found that, the original BERT model was undertrained, therefore they
proposed an improved recipe for training BERT models that they called RoBERTa.
Their modifications to the original approach includes training the model longer with
larger batches and over more data, removing the next sentence prediction objective,
training on longer sequences and dynamically changing the masking pattern applied to

the training data.

1.6 Slovak Word Embeddings

In my research, I employed two distinct varieties of word embeddings specifically de-
signed to represent Slovak words. These encompass the Slovak Word2Vec embeddings
and the SlovakBERT embeddings.

1.6.1 Slovak word2vec

The word2vec representation I described in Section 1.2. The employed Word2vec model
in this study had been trained on The Slovak National Corpus [25], an extensive elec-
tronic database comprising Slovak language texts from 1955 onward. This corpus
covers a wide range of language styles, genres, areas, regions, and more. It contains
approximately 110 million words, providing a substantial and representative dataset

for training the Word2vec model.
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1.6.2 SlovakBERT

Slovak masked language model called SlovakBERT [18] has RoBERTa architecture
with 12 layers, 12 self-attention heads and 768 hidden size. It was trained using Web-
crawled corpus. The available corpora they used were: Wikipedia (326MB of text),
Open Subtitles (415MB) and OSCAR 2019 corpus (4.6GB). They crawled .sk top-level
domain webpages, they extracted the title and the main content of each page as clean
text without HTML tags (17.4GB).
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Methods

The aim of this work is to evaluate the semantic similarity between pairs of words
and find the most suitable word representations capable of capturing semantic infor-
mation. To achieve this, we opted not to utilize one-hot encodings because they solely
indicate the word’s position in the vocabulary. Instead, we employed distributed word
representations.

Although one-hot encodings were previously widely utilized, they have now become
outdated due to their limitations. These encodings represent words as unary vectors,
where all elements except one are set to zero. The non-zero element corresponds to
the word’s position in the vocabulary. Nonetheless, one-hot encodings are incapable of
capturing semantic relationships among words or providing contextual information.

In this chapter, I will discuss the data used for the experiments and the methods
employed to evaluate semantic similarity. For this purpose, I utilized two types of
distributed word representations - Word2Vec and Slovak BERT - which are well-known
for their ability to capture semantic information about words. One can find more details
about Word2Vec and Slovak BERT in Section 1.2 and in Subsection 1.6.2.

In Sections 2.1 and 2.2, I provided a detailed description of the methods used to
obtain word embeddings for Slovak words using both Slovak Word2Vec, presented in
Section 1.6.1, and Slovak BERT, discussed in Subsection 1.6.2 models.

In Section 2.3, I describe the method for evaluating semantic similarity through
word embedding distances in three different experiments: the Chain Association Task,
the Fluency Association Task, and the Discrete Task, presented in Sections 2.3.2, 2.3.3
and 2.3.1.

Section 2.4 provides a detailed description of the data preparation process for binary
classification and the implementation of a Multilayer Perceptron (MLP), discussed in
Subsection 1.1.2 model. The goal of this experiment is to predict the similarity of word

pairs, classifying them as either similar or dissimilar.

The last Section 2.5 describes the process of data preparation and the implementa-

17
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tion of an MLP, introduced in Subsection 1.1.2 model for classifying words into their

respective categories.

2.1 Obtaining word2vec word embeddings

To acquire word embeddings for Slovak words, the pre-trained Word2vec model from
the SparkNLP library was utilized [11]. SparkNLP is an advanced open-source Natural
Language Processing (NLP) library that leverages Apache Spark, providing efficient
and accurate NLP annotations for machine learning pipelines in distributed environ-
ments. It offers a comprehensive range of pre-trained pipelines and models supporting
various NLP tasks such as tokenization, part-of-speech tagging, named entity recogni-
tion, text classification, sentiment analysis, machine translation, question answering,
and more.

For tokenization and word embedding generation, SparkNLP’s classes were em-
ployed, including the DocumentAssembler, Tokenizer, and WordEmbeddingsModel.
The DocumentAssembler class facilitated the preprocessing of the input text, while
the Tokenizer class performed the tokenization process.

Afterwards, the WordEmbeddingsModel class was utilized to generate word embed-
dings using the pre-trained Word2vec model. Each token was mapped to a numerical
representation capturing its semantic meaning.

The resulting word embeddings were stored in a dictionary format, where each

key-value pair represented a word and its corresponding embedding vector.

2.2 Obtaining SlovakBERT word embeddings

SlovakBERT, as described in Section 1.6.2, is a context-sensitive model known for its
ability to produce distinct word embeddings based on contextual usage. This feature
allows for effective capturing of diverse word meanings and usages. The retrieval of
embeddings was accomplished by utilizing the transformers library [23| in Python
[21], specifically employing the RobertaTokenizer and RobertaModel introduced in
Section 1.5.

The process was initiated by loading the pre-trained tokenizer and model specifically
designed for the Slovak language using the from_pretrained method. The tokenizer
played a pivotal role in transforming each word into a sequence of tokens, while the
model was responsible for generating hidden states for each token.

For the purpose of retrieving the embeddings, a function called get_word_vector
was implemented. Within this function, a single word was accepted as input, and a

768-dimensional embedding vector representing the word was returned. The initial step
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involved encoding the input word using the tokenizer. Following that, the resulting
tensor was passed through the pre-trained model to obtain the hidden states of the
model for each token.

In the subsequent stage, we extracted the hidden states from the second-to-last layer
of the model. Leveraging the methodology described in [1], we specifically utilized
the advantage of the last token. The resulting value was then returned as the final

embedding vector, encapsulating the contextualized embedding of the input word using
SlovakBERT.

2.3 Data sources and task descriptions

The Chain Association Task, Fluency Association Task, and Discrete Task involve
participants being presented with stimuli and then generating responses. To examine
the semantic relationship between the stimuli and responses, the distances between the
word pairs’ embeddings are calculated using word2vec and SlovakBERT embeddings.
This analysis aims to explore how the semantic relationship can be determined through

these distance calculations.

2.3.1 Discrete task

The Discrete Task [13] involves participants generating single-word responses to a given
stimulus, which can be categorized as either associative or dissociative. The response
data is stored in CSV files.

To process the data, we utilize the DiscreteTask. py script, utilizing the DataFrame
class from the pandas library [16]. This allows us to extract word pairs and their
corresponding labels, indicating their association or dissociation.

Next, we obtain word2vec and SlovakBERT embeddings for each word using the
get_word_vectors function from the utilities.py script, as described in Section
2.1 and 2.2. Afterward, we calculate the Euclidean distances and cosine similarities
between the embeddings of associated and dissociated word pairs.

To organize and present the results, separate Excel files are created for word pairs,
including their distances calculated using word2vec and SlovakBERT embeddings.
These files contain the word pairs themselves, along with their Euclidean distances,
cosine similarities, and the corresponding condition indicating their association or dis-
sociation. These Excel files can be found in Appendix.

The average distances between associated and dissociated word pairs are calcu-
lated, providing a quantitative measure of the semantic similarity or dissimilarity in
the responses. Moreover, to enhance the comprehensibility of the findings, visual rep-

resentations in the form of bar charts 3.1 3.2 with error bars are generated using the
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matplotlib library [8]. These bar charts illustrate the difference in means between
associated and dissociated word pairs, and the error bars provide a representation of

the standard deviation of these distances.

2.3.2 Chain association task

The Chain Association Task [13] involves the generation of a chain of words where
each word is semantically related to the previous word. The task data is stored in
Excel files, which are processed using the pandas library [16] to extract the word
pairs. Subsequently, embeddings are obtained for each word, and the distances between
these word pairs are calculated using both word2vec and SlovakBERT models. The
methodology for obtaining Word2vec embeddings is described in Section 2.1, while the
process for acquiring SlovakBERT embeddings is outlined in Section 2.2.

The analysis results are presented in separate files for word2vec and SlovakBERT.
The output of our analysis is presented in a separate Excel file for each model. These
Excel files can be found in Appendix. These files contain the word pairs along with their
Euclidean distances and cosine similarities. These distances provide insights into the
semantic relationships and associations between the words. Furthermore, the average
distances between the associated word pairs are calculated for each model.

To present the results in a visually informative manner, distinct bar charts are
generated for the Euclidean distances and cosine similarities utilizing the matplotlib

library [8], as shown in Figure 3.3.

2.3.3 Fluency association task

In the Fluency Association Task, participants generate exemplars belonging to specific
categories, such as animals, liquids, tools, and vegetables. In this study, word pairs
were created using these generated words to assess their semantic similarity. Word pairs
in which both words belonged to the same category were labeled as "associated," while
word pairs consisting of words from different categories were labeled as "dissociated."

To begin, the words and their corresponding categories were extracted from a CSV
file, using the pandas library [16]. Word2Vec and SlovakBERT embeddings were ob-
tained for each word, using the get_word_vectors function from the utilities.py
script, and the aforementioned word pairs were formed. The Excel files, which were
created to store this information separately for word pairs using Word2Vec and Slo-
vakBERT embeddings, can be found in Appendix. These files included the word pair,
its label (associated or dissociated), as well as the calculated Euclidean and cosine
similarity scores derived from the embeddings.

To compare the distances between word pairs from the same category and those from

different categories, bar charts 3.4 were generated using the matplotlib library. These
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charts visually represent the difference in means between associated and dissociated

word pairs, with error bars indicating the standard deviation of these distances.

2.4 Binary classification experiments

Initially, we attempted to assess word similarity by calculating the distances between
word embeddings. However, this method did not yield definitive results in determining
whether a word pair is similar or dissimilar. Following that, we implemented a Mul-
tilayer Perceptron (MLP), introduced in Subsection 1.1.2, to predict the similarity of
word pairs. To accomplish this, we implemented a binary classification process. To be-
gin, I will discuss the necessary steps for data preparation in our experiment, followed
by the implementation of the MLP.

In the first experiment, I used word2vec embeddings, showcased in Section 1.2,
which had 300 dimensions. The model received embeddings of the word pair and a
target value as input, resulting in an input size of 600 and an output size of one.

In the second experiment, I used Slovak BERT embeddings, introduced in Subsec-
tion 1.6.2, which had 768 dimensions, for training. The model also received embeddings
of the word pairs and a target value as input, resulting in an input size of 1536. The
output size remained one, and I tested the performance of the model with different
hidden layer sizes.

The dataset, as shown in Table 2.1, consists of 967 unique words along with their
corresponding categories, which fall into four categories: Animals, Vegetables, Tools,
and Liquids. Word embeddings were obtained according to the methods described
in Sections 2.1 and 2.2. The difference in word counts between SlovakBERT and
Word2Vec is attributed to the presence of out-of-vocabulary words in Word2Vec. A
CSV file was generated containing the words, embeddings, and categories. The code
responsible for this process can be found in the file GenerateTrainingData.py located
in the directories word2vec-embeddings and slovakBERT-embeddings.

In order to train the MLP, a dataset of word pairs was required. Consequently, a
custom dataset class was created using the PyTorch [17] library, which generates dis-
tinct pairs of words and a corresponding target label from the aforementioned dataset.
The data samples were concatenated into a single tensor, and the target label was
assigned as 1 if the two samples belonged to the same category, and 0 otherwise.

To perform K-fold cross-validation as defined in Paragraph 1.1.10, a method was
implemented within our customized dataset class. The relevant code can be found in the
file data_handler_BCT.py located in the TrainMLP directory. This method accepts an
argument specifying the number of distinct subsets to generate. By utilizing PyTorch’s

subset class [17], the dataset was divided into separate subsets.
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Table 2.1: This table presents the word counts of categories before and after dataset
balancing. The "Original Word Count" column represents the word counts of cate-
gories before balancing, while the "Word Count (SlovakBERT)" and "Word Count
(Word2Vec)" columns display the word counts after balancing using SlovakBERT
and Word2Vec embeddings, respectively.

Category Original (SlovakBERT) | (Word2Vec)
Word Count | Word Count | Word Count

Animals 333 113 70
Liquids 264 133 92
Tools 258 128 73
Vegetables 112 112 75

In this particular case, the dataset was split into five distinct subsets, with four
subsets designated for training purposes and one subset reserved for validation. It is
worth noting that the percentage of associated word pairs in both the training and
validation datasets was approximately 27%. To address this, the dataset was balanced
using the undersampling method, resulting in a 43% proportion of associated word
pairs.

An MLP model, outlined in Subsection 1.1.2 was implemented for these experi-
ments, utilizing PyTorch’s nn.Module [17]. The model’s parameters include the fol-

lowing;:
e number of input neurons
e number of neurons in the hidden layer,
e number of output neurons

In this implementation, a single hidden layer was employed, with different numbers of
neurons. Specifically, the hidden layer sizes considered were 50, 150, and 300.

To train the model, I used the Binary Cross Entropy from the nn module in the
PyTorch library under the name BCEloss function and the Adam optimizer, as described
in Section 1.1.8. During training, both the training and validation accuracy and loss
values were monitored, and early stopping based on a patience parameter was imple-
mented. If the validation loss did not show any improvement over a specific number
of epochs, specifically in this scenario, two conditions were used to decide when to
stop the training: after 3 epochs or 5 epochs. At that point, the training was ended
prematurely, and the model that demonstrated the highest performance was selected

and returned.
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The training and validation loss and accuracy values were recorded for each epoch
during the evaluation of the model’s training process. These values were plotted using
the Matplotlib library [8|, enabling the visualization of the model’s learning curve.

In order to evaluate the model’s performance, another set of experiments was con-
ducted using data from a different distribution. This dataset, described in Subsection
2.3.1, comprises free associations and consists of a list of word pairs. In this dataset,
the first word acts as a stimulus, while the second word represents the response, which

can be either associated or dissociated.

2.5 Multi-class classification experiments

In the previous experiment, the model encountered limitations and stochastic infor-
mation, indicating a potential lack of capacity. To address these issues, an alternative
approach was employed, focusing on predicting word categories instead of word pair
similarities.

For this purpose, a Multilayer Perceptron (MLP), discussed in Subsection 1.1.2
was implemented to classify words based on their categories. The dataset used for the
binary classification experiments, presented in Section 2.4, consisting of 967 words, was
utilized, eliminating the need for word pair creation.

Word2vec embeddings, introduced in Section 1.2, and Slovak BERT embeddings,
presented in Subsection 1.6.2, were used in these experiments. The Word2vec embed-
dings have 300 dimensions, while the Slovak BERT embeddings have 768 dimensions.
The model received word embeddings and a one-hot encoded target value as input. The
output size of the model was set to four, corresponding to the number of categories.

A custom dataset class was defined, inheriting from PyTorch’s [17] Dataset object,
to load and process the data. The code can be found in the file data_handler_MCT.py
located in the TrainMLP directory. This class converts the embeddings to tensors and
the categorical labels to one-hot encoded vectors.

Similar to the previous experiment, presented in Section 2.4, the k-fold cross-
validation technique, introduced in Paragraph 1.1.10, was used to partition the data
into subsets for training. The dataset was divided into ten subsets, with each subset rep-
resenting a distinct partition of the data. Within each iteration of the cross-validation
process, eight subsets were used for training, one subset for validation, and one subset
for testing.

Initially, the dataset, as presented in Table 2.1, was imbalanced, leading to difficul-
ties in accurately categorizing the minority class, specifically the "vegetables" category.
To address this issue, the dataset was balanced using undersampling techniques. Be-

fore balancing, the number of words in the "animals" category was three times larger
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than in the "vegetables" category.

The MLP model, introduced in Subsection 1.1.2, utilized the nn.Module from Py-
Torch [17] package. The model’s free parameters include the number of input neurons,
the number of neurons in the hidden layer, and the number of output neurons. A single
hidden layer with varying numbers of neurons, specifically 50, 100, and 300 neurons
were used.

Similar to the previous experiments, the Adam optimizer, discussed in Subsection
1.1.8, was chosen for its strong performance in comparison to the SGD optimizer,
discussed in Subsection 1.1.7. The Cross Entropy loss function from the nn module in
the PyTorch library, named
CrossEntropyLoss, was chosen as the loss function. During training, both the training
and validation accuracy and loss values were monitored, and early stopping based on
a patience parameter was implemented. If the validation loss did not improve for five
epochs, training was terminated early, and the model with the best performance was
returned.

To evaluate the model’s performance, the training and test loss and accuracy values
were recorded for each epoch and plotted using the Matplotlib library [8]. This
visualization allowed for the observation of the model’s learning curve. Additionally,
the sklearn library [2| was used to generate a confusion matrix, which provides insights
into the model’s performance by displaying the number of true positive, true negative,

false positive, and false negative predictions made by the model.
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Results

3.1 Comparing distances between word embeddings

To evaluate the semantic similarity between pairs of words, I used both Euclidean

distance and cosine similarity metrics between their corresponding word embeddings.

In the first experiment, the distances between words with associative and dissocia-
tive meanings were compared, as described in Subsection 2.3.1. The average Euclidean
distance was calculated separately for each category, and then the average distance of
word vectors with associative and dissociative meanings was compared. Figures 3.1
and 3.2 display the Euclidean distances and cosine similarity between word pairs that
are associated and dissociated. In Figures 3.1b and 3.1d, it can be observed that the
mean cosine similarities between dissociated word pairs are significantly closer to zero,
indicating a larger angular separation between these pairs. However, it is worth noting
that there is some degree of overlap in the similarity values between associated and

dissociated word pairs.
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Figure 3.1: This figure depicts the mean Euclidean distances and cosine similarities
between associated and dissociated word pairs obtained from the discrete association
task. The height of each bar represents the average value, and the black error bars
indicate the standard deviations. The methodology for this analysis is discussed in
Subsection 2.3.1
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Figure 3.2: This figure illustrates average Euclidean distances and cosine similarities
between associated and disassociated word pairs obtained from the discrete task, the
averages are the height of each bar in my chart, the standard deviations are repre-

sented by the black error bars. This method is discussed in Subsection 2.3.1.

For the chain association task data, presented in Subsection 2.3.2, I compared every
pair of words in an associative word chain and calculated the average distance between
them, as well as the differences between the minimum and average distance, and the
maximum and average distance. Figure 3.3 displays the average Euclidean distances

and cosine similarities between associated word pairs.
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(a) The mean Euclidean distance between word2vec and Slovak BERT
embeddings is computed for two different datasets, which differ in terms

of the participants involved.
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(b) The mean cosine similarity between word2vec and Slovak BERT em-
beddings is computed for two different datasets, which differ in terms of

the participants involved.

Figure 3.3: The Figure displays the mean Euclidean distances and cosine similari-
ties between associated word pairs from a word chain. The height of each bar in the
chart corresponds to the mean value, while the black error bars indicate the standard

deviation. The method of this experiment is presented in Subsection 2.3.2.
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Finally, as described in Subsection 2.3.3, Fuclidean distances and cosine similarities
were calculated between word pairs using word2vec embeddings and Slovak BERT
embeddings. The dataset consisted of words belonging to four categories. Figure 3.4

shows the mean Euclidean distances and cosine similarities between the word pairs.
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Figure 3.4: The Figure illustrates the average distances and similarities among the
fluency task data, specifically word pairs categorized as either associated or disso-
ciated. These word pairs were derived from a dataset consisting of words belonging
to four distinct categories. Associated word pairs are formed from words within the
same category, while dissociated word pairs are created using words from different
categories. The y-axis represents the mean distance, and the black error bars repre-

sent the standard deviation. The method is showcased in Subsection 2.3.3.
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Table 3.1: Evaluating model performance in the binary classification using Word2Vec
embeddings and varying hyperparameters. The dataset for training and validation
consisted of 967 unique words. Word pairs were generated from these words, clas-
sified as either association or dissociation, regardless of their category membership.
5-fold cross-validation was employed to assess the model’s performance. The figure

displays the accuracy and loss values obtained during the evaluation.

Number of epochs  Dimy;s;  Learning rate Validation accuracy Validation loss

7 20 0.01 99.3% 0.043
8 150 0.01 99.4% 0.034
7 300 0.01 99.5% 0.021
20 50 0.001 99.8% 0.018
21 150 0.001 99.8% 0.010
17 300 0.001 99.9% 0.005

3.2 Binary classification experiments

In this Section, I will present the results of the experiment, where a Multilayer Percep-
tron (MLP), discussed in Subsection 1.1.2, was implemented to classify the similarity of
word embedding pairs. The preparation of the dataset and the implementation of MLP
for training was described in Section 2.4. To train the MLP, word2vec embeddings were
initially utilized, followed by Slovak BERT embeddings.

In the first experiment, 1 used word2vec embeddings for training. The model re-
ceived two word embeddings and a target value as input. Since word2vec embeddings
have 300 dimensions, the MLP received a concatenation of two embeddings, resulting
in an input size of 600. The output size remained one, and different hidden layer sizes

were tested.

Various hyperparameters were experimented with to assess their impact on accu-
racy. As observed in Table 3.1 the results were quite consistent across different hyper-
parameters. When the learning rate was set to 0.01, early stopping occurred earlier.
On the other hand, a learning rate of 0.001 led to higher accuracy and lower loss as the
training progressed over more epochs. Increasing the number of neurons in the hidden
layer resulted in a slight improvement in the model’s accuracy, albeit the difference
was marginal.

Figure 3.5 illustrates the improvement of the training accuracy and validation ac-
curacy during the epochs. During this training, I used a hidden layer size of 300, a

learning rate was set to 0.001, and the momentum was set to 0.9. As shown in the
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figure, the most significant improvements in accuracy and loss occurred during the first
five epochs. Subsequently, the training and validation loss and accuracy remained rel-
atively constant. Early stopping was triggered on the 17th epoch since the validation

loss did not improve for three consecutive epochs.
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Figure 3.5: Training and validation in the binary classification using Word2Vec em-
beddings. The dataset consists of word pairs categorized as associative or dissocia-
tive, depending on whether they belong to the same category or not. 5-fold cross-
validation was utilized to evaluate the model’s performance. The experiment em-
ployed the following hyperparameters: a hidden layer size of 300, a learning rate of

0.001, and a momentum of 0.9.

Since the model demonstrated exceptional performance on the validation dataset
as well, we proceeded to assess its performance using a dataset from a distinct task.
This dataset consisted of free associations, described in Subsection 2.3.1, rather than
category-based comparisons like those used in the training and validation datasets.
The best accuracy the model has achieved on this test dataset is 51% and the loss is
9.022. However, upon examining the word pairs, it becomes evident that certain word
pairs that are expected to be associated based on their category show dissociation in
free associations, while some word pairs that are expected to be dissociated based on
their category exhibit association in free associations.

In my second experiment, I used Slovak BERT embeddings for training. The MLP
was fed with embeddings of a word pair and a target value. Each embedding was 768
dimensional, since the MLP gets a concatenation of two embeddings, the input size is
1536. The output size is one. The MLP had one hidden layer, and the experiment has
been run with different hidden layer sizes. I conducted several experiments to evaluate
the impact of different hyperparameters on the accuracy of my model. The results,
as shown in the Table 3.2, were quite similar to the previous experiment that utilized

word2vec embeddings.
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During these experiments, I tested various hyperparameters, including different
learning rates. A learning rate of 0.01 led to early stopping occurring sooner, while
a learning rate of 0.001 resulted in higher accuracy and lower loss as the training

progressed over more epochs.

Furthermore, I explored the effect of increasing the number of neurons in the hidden
layer. Interestingly, I observed that this change improved the accuracy of the model,

albeit with only marginal differences.

Table 3.2: Evaluation of model performance in the binary classification using varied
hyperparameters and SlovakBERT embeddings. The training and validation dataset
consisted of 967 distinct words. Word pairs were created from these words, catego-
rized as association or dissociation, whether they belonged to the same category or
not. 5H-fold cross-validation was applied during the evaluation of the model’s perfor-
mance. The figure displays the accuracies and loss values obtained during the evalua-

tion of the model.

Number of epochs Dimy;s1  Learning rate Validation accuracy Validation loss

14 20 0.01 98.5% 0.058
11 150 0.01 96.9% 0.096
12 300 0.01 97.2% 0.063
16 50 0.001 99.1% 0.025
18 150 0.001 99.5% 0.021
17 300 0.001 99.2% 0.023

Figure 3.6 illustrates that both the training accuracy and validation accuracy im-

prove similarly during the epochs.
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Figure 3.6: Training and validation results for a binary classification using Slovak
BERT embeddings. The dataset for training and validation comprised 967 distinct
words. Word pairs were generated from these words and categorized as association
or dissociation, regardless of their category membership. The hyperparameters used
in the experiment included a hidden layer size of 150, a learning rate of 0.001, and a
momentum of 0.9. 5-fold cross-validation was applied. The results demonstrate that
the model achieved high accuracy and low loss on both the training and validation

sets.

During this training, as depicted in Figure 3.6, I used a hidden layer size of 150, a
learning rate I set to 0.001, and a momentum set to 0.9. As shown in figure 3.6, the
most significant improvements in accuracy and loss reduction occurred during the first
five epochs. The training and validation loss and accuracy values remained relatively
constant for the rest of the epochs. The early stopping occurred at the 17th epoch
because the validation loss did not improve for 5 epochs. The accuracy on the validation
set was 99.5% and the loss was 0.021.

Following the experiments using word2vec embeddings, I also tested the model on
a dataset that consists of free associations, presented in Subsection 2.3.1, in contrast to
the category-based comparisons present in the training and validation datasets. The
best accuracy that the model achieved on this test dataset was 54% and the loss is
6.928. However, upon examining the word pairs, it becomes evident that certain word
pairs that are expected to be associated based on their category show dissociation in
free associations, while some word pairs that are expected to be dissociated based on
their category exhibit association in free associations. For example, in the training
data, the words "pivo" (beer) and "krém" (cream) are both categorized as liquids and
therefore they are associated with each other. However, in the test data, this word
pair is disassociated. In the Methods Section, I provided a description of the datasets,

which can be found in Section 2.4.
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In this experiment, early stopping was not employed to observe potential overfitting.
I used a model with one hidden layer with 300 neurons, the learning rate I set to 0.001
and the momentum to 0.9. The training was running for 60 epoch, but I did not observe
overfitting, the training loss, validation loss, and accuracy values remained relatively

constant for the epochs, as one can see in the Figure 3.7.
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Figure 3.7: Training and validation results for a binary classification using Slovak

BERT embeddings without early stopping. The hyperparameters used in the exper-
iment included a hidden layer size of 300, a learning rate of 0.001, and a momentum
of 0.9. The results demonstrate that the model achieved high accuracy and low loss

on both the training and validation sets.

In the aforementioned experiments, I used a dataset with distinct word pairs, so
the same word pair did not occur in the training and validation sets simultaneously.
However, individual words that made up the word pairs could have occurred in multiple
pairs and thus might have appeared in both the training and validation sets, but never
with the same pair.

To evaluate how the model would perform on word pairs composed of completely
new words, I modified the data preparation process as follows: I divided the dataset
of 967 words into two sets, with 650 words for training and 315 words for validation.
Additionally, I sampled unique pairs of words for both the training and validation
sets. The size of the training set was 93921, while the validation set was 22556. The
percentage of associated word pairs in both the training and validation datasets was
approximately 27%. In order to have a more balanced dataset, I removed some disso-
ciated word pairs to achieve a similar number of associated and dissociated word pairs,
so the percentage of associated word pairs in the training dataset became 53%, and in
the validation dataset, it was 54%.

I trained an MLP with two hidden layers, and I experimented with various hyper-

parameters. the results showed a consistent pattern where the validation accuracy and



3.3. MULTI-CLASS CLASSIFICATION EXPERIMENTS 35

loss deteriorated after the first epoch of training. Early stopping was applied when the
validation loss did not improve for more than five epochs. Figures 3.8a and 3.8b illus-
trate the progress of training and validation. For this experiment, the MLP had 300
neurons in each hidden layer, the learning rate was set to 0.001, and the momentum
was set to 0.9. During the first epoch, the accuracy was 60.6%, and the loss was 1.248.
However, for the remaining epochs, there was no improvement.I found that the model
struggled to perform effectively on word pairs where both words had not been seen in

any other pair as well.
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Figure 3.8: Training and validation results for a binary classification using Slovak
BERT embeddings with a modified dataset. The hyperparameters used in the exper-
iment included two hidden layers size of 300, a learning rate of 0.001, and a momen-

tum of 0.9. 5-fold-cross validation was applied.

3.3 Multi-class classification experiments

In this experiment, I employed the identical dataset as my previous experiments. The
dataset comprises 967 unique words, accompanied by their embeddings and categories.
These words are categorized into four distinct groups: Animals, Vegetables, Tools, and
Liquids. Unlike my previous experiments that involved creating word pairs for binary
classification, I utilized individual words and their corresponding categories to perform
multi-class classification in this study.

To address the initial imbalance in the individual categories, where the "vegetables"
category was underrepresented, the dataset was balanced using the undersampling
technique. Table 2.1 presents the word counts of categories before and after dataset

balancing.
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In this experiment, I utilized the Adam optimizer, which is described in detail in
Subsection 1.1.8. I also attempted to use the SGD optimizer, discussed in Subsection
1.1.7, but the training required significantly more epochs on average and resulted in
notably lower accuracies. For my loss function, I opted for the Cross-Entropy loss,

which calculates the cross-entropy loss between the output and target.

Multi-class classification using word2vec For this experiment, word2vec embed-
dings of words were used for training. Table 3.3 displays the impact of hyperparameters
on the test outcomes. The "Epoch" column indicates the epoch number at which the
early stopping criterion was met. It can be observed that a learning rate of 0.001 re-
sulted in longer training but achieved higher accuracy. The model with a learning rate

of 0.001 and a hidden layer size of 300 achieved the highest accuracy.

Table 3.3: Accuracies in multi-class classification using varied hyperparameters and

Word2Vec embeddings as input. The dataset comprised 967 distinct words from four
categories. 10-fold cross-validation was applied to evaluate the model’s performance.
The table presents the best accuracies and loss values achieved during the test of the

model, specifically obtained through 10-fold cross-validation.

Epoch Dimy;y Learning rate Test accuracy Test loss

10 50 0.01 74.2% 0.688
100 0.01 74.2% 0.623
300 0.01 67.7% 0.817
44 50 0.001 90.3% 0.409
35 100 0.001 93.5% 0.241
21 300 0.001 96.8% 0.210

Figure 3.9 displays the confusion matrix, where the rows indicate the actual classes
and the columns represent the predicted classes. The diagonal cells of the table show
the percentage of instances that the model correctly classified. For example, the cell in
the first row and first column indicates that 100% of the actual animal instances were
accurately classified as animals by the model.

Figures 3.10a and 3.10b show the training and validation loss, as well as the training
and validation accuracy, respectively. The MLP model used in this experiment had
300 neurons in each hidden layer, a learning rate of 0.001, and employed early stopping
and weight decay with a value of 0.001. The model achieved an accuracy of 96.8% and

a loss of 0.210 on the overall test dataset.
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Figure 3.10: Learning curves illustrate the changes in accuracy and loss throughout

the process of multi-class classification, where Word2Vec embeddings are utilized as

the input. The experiment utilized hyperparameters including a hidden layer size of

300, a learning rate of 0.001, and a momentum of 0.9. 10-fold cross-validation was

employed to evaluate the model’s performance.



38 Results

Multi-class classification using Slovak BERT Table 3.4 presents the influence
of hyperparameters on the test outcomes when using Slovak BERT embeddings. The
model with a learning rate of 0.0001 and a hidden layer size of 300 achieved optimal

results.

Table 3.4: Evaluation of multi-class classification accuracies using diverse hyperpa-
rameters and SlovakBERT embeddings as input. The dataset comprised 967 distinct
words categorized into four categories. 10-fold cross-validation was applied to assess
the model’s performance. The table showcases the best accuracies and loss values

obtained during the model’s testing phase, obtained through 10-fold cross-validation.

Epoch Dimy;y Learning rate Test accuracy Test loss

12 50 0.01 68.8% 0.957
9 150 0.01 66.7% 0.942
11 300 0.01 72.9% 0.805
23 50 0.001 72.2% 0.821
16 150 0.001 74.1% 0.845
11 300 0.001 70.4% 0.859
103 50 0.0001 72.9% 0.845
20 150 0.0001 70.8% 0.870
38 300 0.0001 75% 0.844

Figure 3.11 shows the confusion matrix, while Figures 3.12a and 3.12b display the
training and validation loss, as well as the training and validation accuracy, respectively.
The MLP model used in this experiment had 300 neurons in each hidden layer, a
learning rate of 0.0001, and a momentum of 0.9. Early stopping and weight decay with
a value of 0.001 were employed to prevent overfitting. The model achieved an accuracy
of 75% and a loss of 0.844 on the test dataset.
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Figure 3.11: Confusion matrix of the multi-class classification using Slovak BERT
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Figure 3.12: Learning curves of multi-class classification using SlovakBERT embed-

dings as input. The experiment employed hyperparameters with a hidden layer size

of 300, a learning rate of 0.0001, and a momentum of 0.9. 10-fold cross-validation

was conducted to assess the model’s performance.
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Discussion

In this work, I employed various methods to evaluate the semantic similarity of word
pairs. I utilized two types of word embeddings, namely the Slovak BERT and Word2vec,
to determine which one provides more suitable word representations for these experi-
ments.

Using the first method, discussed in Section 2.3, to evaluate the semantic similarity
between word pairs, I expected the average Euclidean distance of associated word
pairs to be greater than that of dissociated word pairs. However, as discussed in
Section 2.3, there were instances where the average distance of dissociated word pairs
was greater or equal to that of associated word pairs. Similarly, when considering the
cosine similarity of word pairs, I observed similar results, with some cases showing
higher cosine similarity for associated word pairs. Additionally, I noticed an overlap
in these distances, making it difficult to definitively determine whether a word pair
is associated or dissociated based solely on these distances. Consequently, my initial
expectation was not confirmed.

In the binary classification, presented in Section 2.4, high scores were achieved for
both training accuracy and validation accuracy. However, the model’s performance on
the test data from different task, presented in 2.3.1, was poor. One possible reason for
this discrepancy is that, in the training set, words are compared based on the category
they belong to.

For example, in the training data, the words "pivo" (beer) and "krém" (cream) are
both categorized as liquids and therefore they are associated with each other. However,
in the test data, this word pair is disassociated. In another case, the word "palivo"
(fuel) is a liquid and "auto" (car) is a tool, so based on their categories, they are
disassociated with each other. However, in the test data, this word pair is marked
as associated. Similarly, the word "rak" (crayfish) is an animal and "rieka" (river)
is a liquid. Therefore, in the training data, they are disassociated with each other.
However, in the test data, they are also associated.

In the multi-class classification, discussed in Section 2.5, the model achieved a
higher accuracy when using Word2Vec embeddings, compared to using Slovak BERT.
This outcome was unexpected because there was an anticipation for a higher accuracy
with Slovak BERT. One possible reason for this difference could be that Slovak BERT
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is a contextual language model, but during the process of obtaining the embeddings,
described in Section 2.2, the model only receives isolated words without any contextual
information.

One of the conclusions drawn from this work is that evaluating semantic similarity
based on word pairs is challenging without considering the specific experimental con-
text in which the associated or dissociated word pairs occur. The findings highlight
that relying solely on word pair analysis, such as measuring distances or similarities,
may not provide a definitive indication of the semantic relationship between words.
The observed overlap in the distances and similarities of associated and dissociated
word pairs further emphasizes the need to consider the context and experimental setup
to accurately determine the association or dissociation of word pairs. Therefore, to
effectively assess semantic similarity, it is crucial to take into account the context in
which the word pairs are presented during the evaluation process. Due to significant
variability among subjects, it is nearly impossible to evaluate the semantic similarity
of words based on euclidean /cosine metrics.

Another finding from this study is that using Word2vec embeddings exhibited faster
learning compared to the Slovak BERT embeddings. Furthermore, when training the
MLP on Word2vec embeddings, higher accuracy was achieved compared to using Slo-
vak BERT embeddings. This discrepancy in performance can be attributed to the
contextual nature of Slovak BERT. During the process of obtaining Slovak BERT em-
beddings, only isolated words were considered, lacking the contextual information that

the model is designed to capture.



Conclusion

In conclusion, this study aimed to evaluate the semantic similarity of word pairs using
two types of word embeddings: Slovak BERT and Word2vec. The results showed
that the expected relationship between associated and dissociated word pairs based
on distances and similarities was not always consistent. This indicates that evaluating
semantic similarity based solely on word pair analysis is challenging without considering
the context. The study highlighted the importance of considering the context and
experimental setup to accurately determine the association or dissociation of word
pairs.

Furthermore, the study found that Word2vec embeddings exhibited faster learn-
ing and achieved higher accuracy in the multi-class classification compared to Slovak
BERT embeddings. In the binary classification, the difference in performance can be
attributed to the contextual nature of Slovak BERT, as the embeddings were obtained
from isolated words without contextual information. However, it is worth noting that
the performance of learning using Word2vec and Slovak BERT embeddings was com-
parable in the binary classification task.

There are several potential avenues for future research in the field of assessing the
similarity of word pairs in terms of their meaning. One potential area for improvement
involves utilizing higher-quality data during the training and evaluation processes. In
the current study, existing datasets were relied upon, but there is potential for en-
hancement by incorporating larger and more diverse datasets.

Additionally, a valuable approach for future work could involve utilizing datasets
that provide context for obtaining Slovak BERT embeddings. As mentioned previously,
one limitation of the current study was that Slovak BERT embeddings were derived
from isolated words, which may not fully capture the contextual information that the
model is designed to comprehend.

By addressing these aspects, it should be possible to achieve improved results in
this field.
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Appendix

This section provides a condensed overview of the folders encompassing Python scripts,

datasets, tables showcasing the results, and some of their visualizations.

e word2vec-embeddings: This folder contains scripts for obtaining word2vec
embeddings of words from various Excel and CSV files. Additionally, it includes
scripts for comparing the distances between word pairs. The following files are

included:

— ChainAssociationTask.py, DiscreteTask.py, FluencyTask.py:
These scripts process files with words, calculate the distances between word

pairs using word2vec embeddings, and write the results to an Excel file.

— The directories named Chain, Discrete, and Fluency contain Excel and
CSV files that are utilized in the Chain association task, Discrete task, and
Fluency task, respectively. These files are specifically linked to the tasks
described in Subsections 2.3.2, 2.3.3, and 2.3.1.

— The results folder contains the Excel files of the results obtained by evaluat-
ing the semantic similarity using the distances of word2vec word embedding
pairs. The files included are: Chainl.x1sx, Chain2.x1sx, Discretel.xlsx,

Discrete2.xlsx, SVF_aso_dis_w2v.xlsx
— The figures folder contains the visualizations of the results.

— The GenerateTrainingData.py and GenerateTestData.py files contain
Python code responsible for processing files that contain words for both
training and testing. These scripts generate files that include the corre-
sponding word embeddings. The folders train data and test data con-

tain the input and output data of the above mentioned scrips.
— The utilities.py file contains auxiliary functions for computing distances

and visualizing the results.

¢ slovakBERT-embeddings: This folder contains scripts for obtaining slovak-
BERT embeddings of words from various Excel and CSV files, along with scripts

for comparing distances between word pairs. The following files are included:
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— ChainAssociationTask.py, DiscreteTask.py, FluencyTask.py:
These scripts process files with words, calculate the distances between word

pairs using slovakBERT embeddings, and write the results to an Excel file.

— The directories Chain, Discrete, and Fluency contain Excel and CSV

files containing inputs for the previously mentioned python programs.

— The folder named results stores Excel files that contain the results obtained
from the evaluation of semantic similarity using the distances between Slo-
vakBERT word embedding pairs. The files included are: Chainl.x1sx,

Chain2.x1sx, Discretel.xlsx, Discrete2.xlsx, SVF_aso_dis_w2v.xlsx
— The figures folder contains the figures presenting the results.

— The GenerateTrainingData.py and GenerateTestData.py files perform
the processing of files containing words for training and testing purposes,
creating files with the corresponding SlovakBERT word embeddings. The
folders train data and test data contain the relevant files linked to these

scripts.

— The utilities.py file contains helper functions for computing distances

and visualizing the results.

e TrainMLP This folder contains scripts for handling data and training the MLP.

— The data_handlerBCT.py file is responsible for data preparation for the
binary classification, and the BinaryClassificationTask.py file contains

the script for training.

— Similarly, the data_handlerMCT.py file handles data preparation for the
multi-class classification, and the MultiClassClassificationTask.py file

contains the script for training.

— The file named SVF_word_vectors_w2v.csv comprises words along with
their corresponding word2vec embeddings, intended for training purposes.
Similarly, the file called SVF_word_vectors_bert.csv includes the same

words accompanied by their corresponding SlovakBERT embeddings.

— The folders named test data slovakBERT and test data word2vec
contain word pairs along with their corresponding word2vec and Slovak-

BERT embeddings. These folders are utilized for testing purposes.
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