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Chapter 1

Related work

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems that are inspired by the
structure and function of the human brain. ANNs have become increasingly popu-
lar in recent years due to their ability to learn complex patterns and make accurate
predictions on a wide range of tasks, such as image classification, speech recognition,
and natural language processing. In this chapter we write about the basic structure of
ANN, training methods and optimization, based on [4] and [13].

The structure of ANNs is based on interconnected nodes called neurons, which are
organized into layers. These artificial neurons are conceptually derived from biological
neurons in the human brain, which receive and transmit electrical signals. In ANNs,
each neuron receives inputs from neurons in the previous layer, processes them using
weights, and sends output signals to neurons in the next layer. The weights determine
the impact of each neuron on the output of the next layer, and they are updated during
the training process to optimize the network’s performance.

1.1.1 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is the simplest deep network[13]. It consists of neurons,
which are organized into multiple layers: an input layer, one or more hidden layer and
an output layer.

Let see an example: the matrix X ∈ Rn×d denotes a batch of n input examples, each
having d input features (d being 4 in the case of the example figure 1.1). In practice,
we typically process data in minibatches, that refers to a subset of the entire dataset.
Instead of processing the entire dataset at once, it is divided into smaller batches or
subsets of a fixed size, which are processed sequentially. For the MLP with one hidden
layer (as is our example 1.1) with h hidden units, we denote by H ∈ Rn×h the outputs
of the hidden layer. By having both hidden and output layers fully connected, we are

1
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Figure 1.1: An MLP with a hidden layer of 5 hidden units. [13].

able to obtain the weights W(1) ∈ Rd×h and biases b(1) ∈ R1×h for the hidden layer
and the weights W(2) ∈ Rh×q and the biases b(2) ∈ R1×q for the output layer. This
enables us to compute the outputs O ∈ Rn×q of the one-hidden-layer MLP as follows:

H = XW(1) + b(1),

O = HW(2) + b(2).

It can be proven that simply adding a hidden layer does not change the fact that
the model can only approximate affine functions using linear operations (for a detailed
explanation and proof, refer to [13]).

Therefore, we need to use a non-linear activation function, denoted by σ, which is
applied to each hidden unit after the affine transformation. The outputs of activation
functions are called activations. With activation functions in place, it is no longer
possible to collapse our MLP into a linear model:

H = σ(XW(1) + b(1)),

O = HW(2) + b(2).

Because each row in X corresponds to an example in the minibatch, we define the
activation function σ to apply to the inputs of each row individually, i.e., one example
at a time, as defined in [13].

1.1.2 Activations

The activation function is another key component of the structure of ANNs. Activation
functions play a key role in determining whether a neuron should be activated or not,
based on the weighted sum of inputs plus a bias term. They are differentiable opera-
tors that transform input signals to outputs, with many of them adding non-linearity.
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Given their importance to deep learning, it is useful to examine some commonly used
activation functions.

Sigmoid Function
The sigmoid function is a commonly used activation function in artificial neural net-
works. It maps the input values to outputs between 0 and 1, hence it is often referred
to as a squashing function [13].

sigmoid(x) =
1

1 + e−x

Sigmoid activation functions are mostly applied output units for binary classifica-
tion problems, where outputs are interpreted as probabilities.

Tanh Function
Similar to the sigmoid function, the hyperbolic tangent (tanh) function also squashes
its input values, mapping them to the range between -1 and 1.

tanh(x) =
ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x

The function is similar in shape to the sigmoid function, but has point symmetry
about the origin of the coordinate system. While the sigmoid function is commonly
used as an activation function for output layers in binary classification problems, the
tanh function is more frequently utilized in hidden layers due to its ability to model
complex non-linear relationships between input and output.

ReLU Function

One of the most widely used activation functions in ANN is the Rectified Linear
Unit (ReLU) because it is both easy to implement and performs well on many predictive
tasks. ReLU is a simple non-linear transformation where the output is defined as the
maximum of the input element and 0. It is a popular choice due to its simplicity and
good performance.

Relu(x) = max(0, x)

Softmax function

The softmax function is commonly used in the output layer of machine learning
models [13]. It takes a vector x of n real numbers and transforms it into another vector
where all components are in the interval (0, 1) and their sum equals one, representing a
probability distribution. This is done by normalizing the input vector to a probability
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distribution of n probabilities, divided by the sum of exponentials of the input variables.
The function is defined with the following equation:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(1.1)

where xi are the components of vector x from x1 to xn and j going through all
elements.

1.1.3 Forward Propagation

Forward propagation is the process of calculating the output of a neural network given
an input[4] [13]. During forward propagation, the input values are multiplied by the
weights of the first layer, then a non-linear activation function is applied, and this
process is repeated for each layer until the final layer produces the output.

Let us look at this process step-by-step:
The input example is x ∈ Rd, then the intermediate variable is

z = W(1)x,

where W(1) ∈ Rh×d is the weight parameter from the hidden layer. Then we apply the
activation function ϕ and we obtain the hidden activation vector of length h,

h = ϕ(z).

The output h of the hidden layer is also an intermediate variable.
Given the example shown in Figure 1.1, if we assume that the parameters of the

output layer correspond to a weight matrix W(2) ∈ Rq×h, then we can obtain the
output layer variable o with a vector of length q as follows:

o = W(2)h.

The forward propagation step is performed for each input in the training dataset
during the training. The output is compared to the expected output, and the difference
between the two is used to adjust the weights and biases of the network in the backward
propagation step.

1.1.4 Backpropagation

Backpropagation is a technique used to compute the gradient of neural network param-
eters. It involves traversing the network in a reverse order, starting from the output
layer and moving towards the input layer using the chain rule from calculus. This
algorithm stores any intermediate variables (partial derivatives) needed while comput-
ing the gradient with respect to specific parameters. This gradient is then used to
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update the weights and biases in the opposite direction of the gradient, with the goal
of reducing the loss function.[13]

1.1.5 Adam

Adam (adaptive moment estimation) is a first-order gradient-based optimization al-
gorithm introduced by Kingma et al.[6]. This method combines the strengths of two
commonly used optimization techniques: AdaGrad (Duchi et al., 2011[3]), which is
effective for dealing with sparse gradients, and RMSProp (Tieleman & Hinton, 2012
[11]), which performs well in non-stationary and online settings. Let us look at the
algorithm cited from [13].

Adam uses exponential weighted moving averages, also called leaky averaging, to
estimate the momentum and the second moment of the gradient, by using these vari-
ables:

vt ← β1vt−1 + (1− β1)gt,

st ← β2st−1 + (1− β2)g
2
t .

The β1 and β2 are non-negative weighting parameters, which are often set to β1 =

0.9 and β2 = 0.999.If v0 = s0 are initialized as 0, initially we experience a significant
bias towards smaller values. This can be managed by using

∑t
i=0 β

i = 1−βt

1−β
to re-

normalize terms. Accordingly, the normalized state variables are given by

v̂t =
vt

1− βt
1

and ŝt =
st

1− βt
2

.

Now that we have the correct estimates, we can write down the update equations.
First, we scale the gradient in a similar way to RMSProp.

g′
t =

ηv̂t√
ŝt + ϵ

Now we have everything to calculate updates, which can be computed using this
formula:

xt ← xt−1 − g′
t.

1.1.6 Generalization

Generalization in machine learning refers to the ability of a model to make accurate
predictions on new, unseen data, beyond the data it was trained on. It is the ultimate
goal of machine learning, where the purpose is not only to fit the training data but also
to discover underlying patterns that enable the model to make accurate predictions
on new, unseen data. In deep learning, generalization is a crucial challenge due to
the complexity of the models and the high dimensionality of the data. While the
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theory of deep learning is still evolving and far from a comprehensive account of both
optimization and generalization, practitioners have developed a range of techniques
and heuristics that can help to produce models that generalize well in practice.

1.1.7 Overfitting

Overfitting occurs when the model learns to fit the training data too closely and fails to
generalize well to new, unseen data. This can happen when the model is too complex
or when it is trained for too many epochs, resulting in a model that is too specialized
to the training data and unable to capture the underlying patterns in the data. As a
result, the model may perform very well on the training data but poorly on the test
data, leading to a large generalization gap. To prevent overfitting, techniques such as
early stopping, regularization, and dropout can be applied during training.

There are several methods that can be used to address overfitting. These methods
include weight decay, dropout and early stopping.

Weight decay Weight decay adds a penalty term to the loss function that the model
is trying to minimize. This penalty term is proportional to the square of the weights
in the model, and it encourages the model to use smaller weights. The mathematical
equation for weight decay is:

L(w, b) = L+
λ

2
||w||2 (1.2)

In this equation, L is the original loss function, λ is the weight decay coefficient and
||w||2 is the norm of the weight vector.

Dropout Dropout works by randomly dropping out (setting to zero) a proportion
of the neurons in a layer during training. The dropped out neurons are selected at
random, with a given probability, typically around 0.5. With dropout probability p,
each intermediate activation h is replaced by a random variable h′ as follows:

h′ =

0 with probability p

h
1−p

otherwise
(1.3)

Early stopping Early stopping constrains the number of epochs of training. During
the training, the performance on validation data is monitoring, usually by checking it
once after each epoch. The training stops, when the validation error has not decreased
by more than some small amount ϵ for some number of epochs.
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Figure 1.2: Influence of model complexity on underfitting and overfitting [13].

1.2 Word2vec

In this section, we will discuss pre-trained word representations, such as Word2vec,
according to a papers [9] and [8]. Word2vec representations are commonly used in
NLP pipelines to improve their performance. These pre-trained representations pro-
vide distributional information about words that can improve the generalization of
models learned on limited amount of data. The typical method for obtaining word
representations is through log-bilinear models trained using either the skip-gram or
continuous bag-of-words (CBOW) architectures, which are commonly implemented in
word2vec. These models are trained on large unlabeled corpora of text data, and cap-
ture statistical information from vast sources of data.

Several modifications to the standard word2vec training pipeline significantly im-
proves the quality of the resulting word vectors. These include position-dependent
features, phrase representations. These modifications have been evaluated on vari-
ous benchmarks such as syntactic, semantic, and phrase-based analogies, rare words
dataset, and as features in a question-answering pipeline.

The CBOW model learns to predict a target word based on its surrounding context.
The context is defined as a symmetric window that includes all the adjacent words.
In other words, given a sequence of T words w1, w2, ..., wT , the CBOW model aims
to maximize the log-likelihood of the probability of the words, given their surrounding
context, i.e.:

T∑
t=1

log p = (wt|Ct) (1.4)

where Ct is the context of the t-th word.
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The Continuous Skip-gram Model is similar to CBOW model, but it maximizes
the classification of a word using another word within the same sentence, instead of
predicting the current word based on the context. Specifically, the model uses a log-
linear classifier with a continuous projection layer to predict words within a certain
range before and after the current word. Increasing the range improves the quality
of the resulting word vectors, but it also increases the computational complexity. To
reduce the impact of less relevant distant words, less weight is given to them by sampling
less from those words in the training examples.

Figure 1.3: CBOW and Skip-gram models architecture [8].

1.3 Transformer

Recurrent neural networks, including long short-term memory [5] and gated recurrent
neural networks [1], are commonly used for sequence modeling and transduction tasks
such as language modeling and machine translation. Researchers have continued to
improve these models and explore new architectures. However, these models are se-
quential, which limits parallelization within training examples and becomes critical at
longer sequence lengths.

To address this issue, the Transformer [12] model was proposed. It relies entirely
on an self-attention mechanism to draw global dependencies between input and output
sequences, instead of recurrence. This allows for significantly more parallelization and
achieves state-of-the-art results in translation quality with a shorter training time.
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Architecture of the transformer

Most competitive neural models for sequence translation have an encoder-decoder
structure. The encoder maps an input sequence of symbols to continuous represen-
tations, while the decoder generates an output sequence one symbol at a time, using
the previously generated symbols as additional input. The Transformer follows this
structure, using self-attention and fully connected layers for both the encoder and de-
coder. This is shown in Figure 1.4, where the left half represents the encoder and the
right half represents the decoder.

The encoder in the Transformer model consists of six identical layers. Each layer
has two parts: a multi-head self-attention mechanism and a simple, fully connected
network. Both parts are surrounded by a residual connection and layer normalization.
The output of each sub-layer is added to the input to facilitate residual connections.
All sub-layers in the model and embedding layers produce outputs of dimension 512 to
enable these connections.

The decoder also has six identical layers, with two sub-layers in each layer as in the
encoder. Additionally, a third sub-layer performs multi-head attention over the output
of the encoder stack. To prevent attending to subsequent positions, the self-attention
sub-layer in the decoder stack is modified with masking, and the output embeddings
are offset by one position. This ensures that the predictions for position i only depend
on known outputs at positions less than i.
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Figure 1.4: The architecture of the Transformer - model from [12]

1.4 BERT

The paper titled "BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding" [2], introduces a language representation model called BERT (Bidirec-
tional Encoder Representations from Transformers). Unlike previous language models,
BERT is designed to pretrain deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. This approach enables
BERT to be fine-tuned for a wide range of tasks, such as question answering and lan-
guage inference, with just one additional output layer, without substantial task-specific
architecture modifications.

The model is first pre-trained on unlabeled data over different pre-training tasks.
One of the two tasks was masked language modeling, which involved randomly masking
a certain percentage of the input tokens and then predicting the masked tokens. The
second task was Next Sentence Prediction (NSP), which involve predicting whether a
given sentence was the actual next sentence in a pair of sentences or a random sentence
from the corpus, and helped the BERT model understand the relationship between two
sentences.

After pretraining, the model is fine-tuned using end-task labeled data. This process
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is simple and efficient due to the self-attention mechanism in the Transformer that
enables the model to handle various downstream tasks. The input and output layers
are plugged into BERT for each task, and all parameters are fine-tuned end-to-end.
Fine-tuning is less expensive compared to pre-training.

The architecture of the model is a bidirectional Transformer encoder with multiple
layers, which is based on the original implementation explained in the paper [12] BERT
comes in two sizes: BERTbase and BERTlarge. BERTbase has 12 Transformer blocks, 12
self-attention heads, and 110 million parameters, while BERTlarge has 24 Transformer
blocks, 16 self-attention heads, and 340 million parameters.

Figure 1.5: The representation of the BERT input. The input embeddings are
the sum of the token embeddings, the segmentation embeddings and the position
embeddings.[2]

Input/Output Representations
The input representation of BERT is able to handle both single sentences and pairs
of sentences in one token sequence. Each sequence starts with a special classification
token ([CLS]) and is separated by a special token ([SEP]). A learned embedding is
added to every token indicating whether it belongs to sentence A or sentence B. The
input embedding is constructed by summing the corresponding token, segment, and
position embeddings as seen on Figure 1.5.

The output representation of BERT is a set of contextualized word embeddings,
where each word is associated with a vector representation that captures its contextual
meaning in the sentence.

1.5 RoBERTa

RoBERTa (Robustly Optimized BERT Approach) is a transformer-based language
model that was developed by Liu et al. [7]. This model is based on BERT released by
Jacob Devlin et al.[2]. In their study, Liu et al. conducted a replication of the BERT
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pre-training approach with a focus on the effects of hyperparameter tuning and training
set size. They found that, the original BERT model was undertrained, therefore they
proposed an improved recipe for training BERT models that they called RoBERTa.
Their modifications to the original approach includes training the model longer with
larger batches and over more data, removing the next sentence prediction objective,
training on longer sequences and dynamically changing the masking pattern applied to
the training data.

1.6 SlovakBERT

In this section, we describe Slovak masked language model called SlovakBERT [10].
It has RoBERTa architecture with 12 layers, 12 self-attention heads and 768 hid-
den size. It was trained using Web-crawled corpus. The available corpora they used
were: Wikipedia (326MB of text), Open Subtitles (415MB) and OSCAR 2019 corpus
(4.6GB). They crawled .sk top-level domain webpages, they extracted the title and the
main content of each page as clean text without HTML tags (17.4GB).
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