UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROGRAMOVANIE ROBOTOV POMOCOU
STAVOVYCH AUTOMATOV
BAKALARSKA PRACA

2024
TOMAS VIKISZALY

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROGRAMOVANIE ROBOTOV POMOCOU
STAVOVYCH AUTOMATOV
BAKALARSKA PRACA

étudijny program: Aplikovana informatika
Studijny odbor: Informatika

Skoliace pracovisko: Katedra aplikovanej informatiky
Skolitel: Mgr. Pavel Petrovi¢, PhD.

Bratislava, 2024
Tom4as Vikiszaly

96368802

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Tomas Vikiszaly

Studijny program: aplikovana informatika (Jednoodborové stidium, bakalarsky
L. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: bakalarska

Jazyk zaverecnej prace: slovensky

Sekundarny jazyk: anglicky

Nazov: Programovanie robotov pomocou stavovych automatov

Anotacia:

Ciel’:

Literatura:

KPucové
slova:

Programming Robots Using Finite State Machines

Robotické modely zo stavebnice Spike Prime sa programuja v troch réznych
jazykoch: IconBlocks — uréeny najmi pre prvy stupeit ZS, WordBlocks —
uréeny najmi pre druhy stupneit ZS, Python — uréeny najmi pre pokroéilych
pouzivatel'ov. Problém je, Ze ani jeden nie je idealny na modelovanie spravania
robota: IconBlocks: neobsahuje ani podmienky, WordBlocks: obsahuje
podmienky, cykly, a (bohuzial’ iba globalne) udalosti, Python: texovy jazyk
a preto neprehl'adny a nevhodny na modelovanie spravania. NajprirodzenejSim
modelom spravania je stavovy automat (state machine), pretoze robot pocas
rieSenia ulohy prechadza cez rozlicné stavy/fazy — napr. stavl: je na Ciare,
stav2: hl'ad4 pokraCovanie Ciary po jej preruSeni, stav3: prechadza cez tunel,
stav4: obchadza prekdzku, ale aj jednotlivé stavy mozu o troven abstrakcie
nizsie obsahovat’ stavové automaty, napr. kym je na Ciare, tak sa meni stav
medzi dvoma stavmi: hranavpravo: nachddza sa nal'avo od hrany, hranavl’avo:
nachadza sa napravo od hrany. CiZe kazdy stav mdzZe byt vnutri znova stavovy
automat a naopak, celkové spravanie automatu mozno povazovat za jeden
makrostav v stavovom automate na vySSej urovni abstrakcie. Na kazdom
stavovom prechode je urc¢ena udalost’, kedy k nemu dochadza, priCom virtualne
udalosti m6ze automat generovat’ aj sam. V jednotlivych stavoch a na stavovych
prechodoch mozno Startovat’ aj tradi¢ne zapisany proceduralny kod (task),
pricom tasky moézu interagovat’, bezat’ aj v pozadi stavového automatu alebo
byt’ automaticky ukoncené pri zmene stavu.

Ulohou $tudenta bude naprogramovat’ a na netrivialnych ukakach otestovat’
novy graficky programovaci jazyk pre Spike Prime zalozeny na stavovych
automatoch.

R. A. Brooks, "A robot that walks; emergent behaviors from a carefully evolved
network," in Proceedings, 1989 International Conference on Robotics and
Automation, pp. 692-4+2 vol.2, 1989.

R. Balogh, D. Obdrzalek, “Using Finite State Machines in Introductory
Robotics”, in: Robotics in Education. RiE 2018. Advances in Intelligent
Systems and Computing, vol 829. Springer, 2019.

R. Ghzouli etal. "Behavior Trees and State Machines in Robotics Applications,"
in IEEE Transactions on Software Engineering 49 (9), Sept. 2023.

kone¢ny automat, programovanie robotov, robotika vo vzdeldvani

96368802

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Veduci:
Katedra:
Veduci katedry:

Datum zadania:

Datum schvalenia:

Student

Mgr. Pavel Petrovi¢, PhD.
FMFI.KALI - Katedra aplikovanej informatiky
doc. RNDr. Tatiana Jajcayova, PhD.

10.10.2023

16.10.2023 doc. RNDr. Damas Gruska, PhD.

garant $tudijného programu

veduci prace

Cestné prehlasenie

Cestne vyhlasujem, ze cela bakalarsku pracu na tému ,Programovanie robotov po-
mocou stavovych automatov®, vratane vSetkych jej priloh a obrazkov, som vypracoval

samostatne, a to s pouzitim literatury uvedenej v prilozenom zozname.

Pod’akovanie: Citim obrovski vdacnost vo¢i mojmu skolitelovi, ktorym bol Mgr.
Pavel Petrovi¢, PhD, za vSetku pomoc, podporu a hodiny so mnou stravene v labora-
toriu. Vdacény som aj svojej rodine za podporu a povzbudenia, ktoré som pocas svojho

celého studia od nich dostéaval.

iv

Abstrakt

Tato bakalarska préca sa venuje navrhu a implementéacii novej metédy programovania
robotickych stavebnic Spike Prime od spolo¢nosti LEGO Education. Novou metdédou
je pouzivanie stavovych automatov, ktoré jasne popisuji spréavanie robota v réznych
situaciach a jeho reakcie na udalosti zavislé od kontextu. Ich grafickd reprezentécia je
prehladné a samovysvelujica, ¢o nie vzdy plati o kode zapisanom pomocou blokového
jazyka WordBlocks, kde mozu byt zadefinované iba udalosti s globélnou platnostou,
alebo pomocou textového zdrojového kddu, kde spravanie robota nie je vizualizované
vobec. Navrh a implementacia systému je rozdelenid do niekolkych ¢asti. Prvou cas-
tou je grafickd aplikacia, naprogramovana v C#, v ktorej moze pouzivatel vytvéarat
a menit stavové automaty. Druhou je webové prostredie, ktoré sluzi na komunikaciu
medzi pocitac¢om a robotom a vzniklo modifikdciou prostredia pre systém PyBricks.
Pouzivatelom vytvorené automaty sa do Prime Hub nahravaju cez konzolu prostredia
po ich prelozeni do vnutornej reprezentacie. Tretou ¢astou bol novy firmware pre ria-
diacu jednotku Prime Hub, ktory vznikol upravou firmware k systému PyBricks, jeho
rozsirenim o ¢itanie a vykonavanie stavovych automatov. Tuto funkcionalitu sme im-
plementovali a podrobili testovaniu, aby sme sa uistili, Ze implementacia nemé chyby.
Naprogramovali sme niekol'ko stavovych automatov ako ukazku, ako takéto programy

vyzeraju.

Krluacoveé slova: Koneény automat, programovanie robotov, robotika vo vzdelavani

Abstract

This bachelor’s thesis deals with the design and implementation of a new method of
programming Spike Prime robotic kits from LEGO Education. A new method is the use
of state machines that clearly describe the robot behavior in different situations and its
context-dependent reactions to events. Their graphical representation is clear and self-
explanatory, which is not always the case when source code is expressed using blocks,
where only global-events can be specified, or the source code is a plain text program
with no graphical visualisation at all. Design and implementation of the system consists
of several parts. The first part is a graphical application written in C# in which the
user can create and edit state machines. The second is the web environment, which
is used for communication between the computer and the robot. It was developed by
modifying the PyBricks web environment. State machines programmed by the user
are uploaded to Prime Hub through its console window after they are compiled to an
internal representation. The third part was the new firmware for Prime Hub control
unit. It was developed by modifying the PyBricks firmware so that it can read and
execute the state machines. We implemented and tested this functionality to ensure
that the implementation is without bugs. We programmed several state machines as a

demonstration of how such programs looks like.

Keywords: Finite state machines, robot programming, robotics in education

vi

Obsah

Uvod

1 Vychodiska

1.1 Stavebnice LEGO Education
1.1.1 Nultd generacia Lo
1.1.2 Prva generacia
1.1.3 Druhéa generacia Lo
1.1.4 Tretia generacia
1.1.5 Stvrta GENETACIA

1.2 Jazyky na programovanie robotov oo
1.2.1 Konec¢né stavové automaty

1.3 LEGO Spike Primeo
1.3.1 Programatorské prostredia

1.4 Programovanie grafickej aplikacie v C#
1.4.1 Serializacia v aplikaciach C#

2 Specifikacia a ciele prace

2.1 Softvér na tvorbu automatov
2.2 Novy firmvér
2.3 Uprava webovej aplikdcie
3 Navrh

3.1 Navrh modelu stavovych automatov
3.2 Navrh modelu jazyka pre akcie v automatoch

3.2.1 Vzorové programy
3.3 Navrh aplikacie L
3.4 Navrh firmvéru
3.5 Navrh uprav webového prostredia

4 Implementacia

4.1 Citanie dat zo SeNzorov

vii

o o N Ot Ot W w W

e e e
N O =N O

19
19
19
20

21
21
23
23
27
28
29

31

4.2 Ovladanie motorov

4.3 Bluetooth a komunikdcia

5 Vysledky

5.1 Ukazky hotovych programov
5.1.1 Aplikicia na tvorbu automatov
5.1.2 Webova stranka
5.1.3 Firmvér

5.2 Testovanie

Zaver

Priloha A

viil

33
33
33
35
35
36

39

43

Zoznam obrazkov

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

3.1
3.2

5.1
5.2
9.3
5.4
3.5
5.6

Ukazka programu LEGO DACTA 4
Ukéazka programu LEGO RoboLab 4
Ukéazka dvoch programov v Robotics Invention System 5
Ukézka programu LEGO RobolLab 6
Ukézka robota LEGO NXT-G 6
Ukéazka programu LEGO NXT-G 7
Ukazka programu LEGO EV3 8
Ukézka modelu zo stavebnice LEGO EV3 8
Ukézka programu v jazyku Scratch 9
Ukéazka modelu zo stavebnice LEGO Spike Prime 9
Obrazok popisujuci subsuption architecture 12
Program pohybu robota, ktory prenasleduje objekt pred sebou 13
Jednoduchy robot s ultrazvukovym senzorom 14
Stavovy automat pre pohyb robota podla vzdialenosti. 14
Navrh grafickej reprezentacie stavového automatu 22
Néavrh aplikicie pre tvorbu automatov 28
Ukazka automatu 34
Ukéazka netrivialneho automatu 34
Webové prostredia poc¢as behu automatu 35
Fotografia z testovania 36
Fotografia z programu z testovania 37
Fotografia z testovania programu 38

X

Zoznam koédov

1.1
1.2
3.1
3.2
3.3

Automaticky generovany kod po vytvoreni novej aplikacie C# 17
Automaticky generovany kod pre grafické komponenty v C# 17
Ukézka modelu jazyka 23
Program pre sledovanie objektu 00000 25
Program pre pracu s gyroskopom a LED svetelnym displejom 26

X1

xii

Uvod

Sposobov, ako programovat robotov je niekol’ko. Pre robotické stavebnice Spike Prime
do spolo¢nosti LEGO Education sa sem radi programovaci jazyk Python, vhodny pre
najskisenejsich pouzivatelov, vizudlny programovaci jazyk WordBlocks zaloZzeny na
principoch populérneho jazyka Scratch a ikonograficky jazyk IconBlocks uréeny pre
najmladsich pouzivatelov. Hoci jazyky maju jednoduchu syntax a Iahko pochopitelné
funkcie, problémom je, Ze ak sa pouzivaju na programovanie viac alebo aj menej kom-
plexnejSieho spravania robota, programova struktira nezodpoveda priamo spréavaniu
robota a preto takyto zapis spravania robota nie je dostato¢ne priehladny a zrozumi-
telny a preto sa v iom tazsie hTadaju chyby. Navyse, ak sa programator vrati k tomuto
programu po nejakom dlhsom ¢ase, potrva mu nejakt dobu, kym pochopi, ¢o program
robi.

Riesenim tohto problému by bolo vytvorit novy spésob, ako programovat roboty. Pri
tom ale dodrzat zéasady, Ze tento spésob bude jednoduchy a prehladny. Jednym z dob-
rych spodsobov, ktory by dodrzal tieto zasady, by bolo pouzitie stavovych automatov.
Stavové automaty su jednoduché na pochopenie, su prehladné a ich graficka vizuali-
zacia je zaroven aj dokumentacnym materidlom a predovSetkym, kedZe st vhodné na
modelovanie spravania robota, nasou hypotézou je, ze budu vhodné aj na jeho progra-
movanie — a to by sme vdaka vysledkom tejto préace chceli umoznit otestovat.

Cielom tejto bakalarskej prace je zanalyzovat moznosti, navrhnit rieSenie, imple-
mentovat ho a nasledne ho otestovat a takto ukazat, Ze stavové automaty si vhodnym

sposobom ako programovat spravanie robotov. Praca sa ¢leni na niekol'ko ¢asti a to na:

1. Zbieranie a zosumarizovanie vSetkych potrebnych informacii, ktoré budeme po-
trebovat pre navrh riesenia. Patri sem Specifikacia stavebnice, popis aktualneho

firmvéru ako aj popis nastrojov, ktoré budeme pre implementaciu pouzivat.

2. Navrh rieSenia, ktory vznikne na zaklade informaécii, ktoré sme ziskali. Pri navrhu
udrzat rieSenie jednoduché a prehladné ale efektivne a robustné, aby ho mohol

vyuzivat ako ziak tak aj skiiseny programétor.

3. Implementaciu navrhu vo vsetkych castiach. Tvorbu aplikacie na kreslenie sta-

vovych automatov, pravu webového prostredia pre spravnu komunikaciu medzi

Uvod

pocitacom a robotom a samotny firmvér, ktory bude naSe stavové automaty ve-

diet ¢itat a vykonéavat.

4. Otestovanie aplikacie, aby nasSe rieSenie neobsahovalo chyby a nezelané spravanie.

Kapitola 1

Vychodiska

V tejto kapitole sa budeme venovat teoretickej Casti tejto bakalarskej prace. Budeme
v nej popisovat stavebnice LEGO Education, ich histériu a postupny vyvoj, moznosti
programovania tychto stavebnic, vyhody a problémy takéhoto programovania a progra-
matorské prostredia. PopiSeme d'alsie moZnosti, ako programovat tieto stavebnice, kde
spomenieme konec¢né stavové automaty, aktudlny firmvér a tvorbu grafickej aplikacie v

jazyku CH#£.

1.1 Stavebnice LEGO Education

Prvé robotické stavebnice od spolo¢nosti LEGO Education vznikli v osemdesiatych
rokoch minulého storocia a st urc¢ené pre ziakov zékladnych a strednych skol. Hoci
hrackarska divizia na trhu umiestiiovala stavebnice s bojovymi robotmi a zékladnymi
stuciastkami pre chlapcov, vzdelavacia divizia vzdy vyrabala voc¢i pohlaviu neutralne
stavebnice. Jednoduché motoréeky na jednosmerny pruad boli postupne vybavené za-
budovanymi otackovymi senzormi, pribudli gyroskopy, ultrazvukové i farebné senzory,
rozne verzie displejov, komunikécia cez BlueTooth a d’alsie komponenty. Skoly ich vy-
uzivali na vzdeldvanie informatiky, robotiky a programovania pomocou hry, kreativity
a objavovania, k comu LEGO Education pripravuje a neustale vylepsuje didaktické

materialy.

1.1.1 Nulta generacia

Prvou skutoc¢ne robotickou stavebnicou bola stavebnica LEGO Dacta Control Lab.
Tato generacia sa programovala na pocitacoch v jazyku Logo pomocou softvéru Control
Lab. V tomto softvéri sa vytvoril kompletny program, ktory mohol vizualizovat infor-
mécie na displeji pocitaca a bol spustany priamo v pocitaci. Stavebnica neobsahovala
ziadne CPU, pamat ani batériu, len hardvér pozostévajici z jednosmernych motorce-

kov, ziaroviek a senzorov. Nevyhodou bolo to, Ze robot musel byt neustale pripojeny

4 KAPITOLA 1. VYCHODISKA

Obr. 1.1: Na obrazku je mozné vidiet softvér Control Lab a stavebnicu LEGO Dacta

Control Lab. Zdroj obrazka je snimok obrazovky z videa [2].

Obr. 1.2: Tlustraény obrazok programu v LEGO RoboLab. Prevzaté z [3].

k pocitacu, ¢o obmedzovalo rozsah pohybov robota, ¢o ale zaroven bolo vyhodou, ze
vSetky data si mohol uZivatel nechat vykreslovat alebo vypisovat na obrazovku a ro-
bota riadit interaktivne, spustat jednotlivé prikazy, jednoducho ladit a testovat Casti

svojho programu. Ukazky moze ¢itatel najst na tejto stranke [1].

Alternativou k softvéru LEGO Dacta bol vytvoreny softvér zalozeny na jazyku
LabView s nazvom LEGO RoboLab. Na rozdiel od textového kodu v LEGO Dacta
tento softvér bol graficky postaveny na takzvanom toku dat. Mézeme si to predstavit
ako subor nezavislych firiem, ktoré spracuju material okamzite po tom, ¢o k nim pride a
hned ho posielaju dalej, do dalsej firmy. Tym je zabezpecené rychlost behu programu

a preto je tento jazyk velmi popularny medzi fyzikmi programujucimi senzory.

1.1. STAVEBNICE LEGO EDUCATION)

- touchORtimer If Timer 1

@ =

— ‘ "
Ac |
, : off AC
2 (hrake) .
Wait Until]
Beep |
Touch 2 1 .)
| |
DFAC |
(brake) ‘w

Obr. 1.3: Ukézka dvoch programov v Robotics Invention System. Globalne udalosti
mohli reagovat na stavy senzorov alebo Casova¢. Vetvenie programu inSpirované na-
strojmi CASE zo softvérového inzinierstva z minulého tisicrocia - rovnaka myslienka

ako neskor vyuzil jazyk Scratch. Prevzaté z [16].

1.1.2 Prva generacia

Podstatna zmena nastala v roku 1998, ked spolo¢nost LEGO vydala stavebnicu LEGO
MINDSTORMS Robotics Invention Kit so znamou zltou kockou RCX, ktora uz bola pl-
nohodnotnym pocitacom programovatelnym cez proprietarny IR port a teda umoznila
konstrukciu autonémnych mobilnych robotov. Bolo k nej mozné pripojit tri vystupné
a tri vstupné zariadenia. Programovala sa v jazyku, ktory by sme mohli povazovat za
predchodcu jazyka Scratch, lebo jeho $truktara bola velmi podobna. Zaujimavou ¢rtou
boli globéalne udalosti - podmienky, ktoré sa poc¢as behu programu neustale kontrolovali
a pri ich splneni sa odstartovala zodpovedajuca postupnost kodu, priklad je zobrazeny
na obr. 1.3.

1.1.3 Druha generacia

KedZe spolocnost LEGO Education zaznamenala so stavebnicou tspech, tak pokraco-
vali vo vyskume a na trh priniesli novii generaciu stavebnice, ¢o popisuje aj jej nézov,
LEGO MINDSTORMS Next Gereration, skratene NXT-G. Rozdielov bolo niekolko.
Niektoré boli malé a iné opét velké. Bezdrdtové pripojenie cez IR port nahradilo pri-
pojenie cez BlueTooth ale zarovenn moznost pripojit robota cez USB kabel. BohuZzial,
rovnako ako s RCX, ani s NXT-G nemohli ziaci pracovat interaktivne zo svojho poci-

taca - zobrazovat si pomocné textové, alebo grafické vystupy, umiestiovat na plochu

6 KAPITOLA 1. VYCHODISKA

Obr. 1.5: Robot LEGO MINDSTORMS NXT-G. Prevzaté z [5].

tlacidla alebo iné prvky, ktorymi sa model riadil ako to bolo v systéme Control Lab.
Namiesto toho nastipila paradigma Program - Download - Run, ktorej vysledkom je
naroc¢nejsie ladenie robotov.

Na programovanie sliazil novy graficky softvér, ktorého jadro bolo postavené na
systéme LabView, alternativou bolo programovanie v samotnom LabView pre pokro-
¢ilych. Tento softvér uz nebol textovy jazyk (aj ked zaobaleny do dielikov puzzle),
ale plnohodnotne ikonograficky jazyk. Program pozostaval z prepojenych ikon jednot-
livych prikazov a po rozkliknuti nejakého bloku sa otvorila paleta, kde si Ziak mohol
navolit parametre, s ktorymi bude prikaz pracovat. Ked ale chcel pouzivatel zdielat
svoj program v grafickej podobe, tak to bolo velmi nepraktické, lebo by musel odfo-
tit rozkliknuty kazdy blok samostatne, lebo bez parametrov by druhy uzivatel nemal
ziadany vysledok.

Pocas produkcie tejto generacie sa aj na Slovensku zacal usporadivat program First

1.1. STAVEBNICE LEGO EDUCATION 7

. LG UATIZAN Llas = e Pryvem oy -
E—_'Ij T IEEEED |1 a .-|=II - 3 | . ii
xff!
3 |
= g =
AERE R R B B BEC EaEC B B
oy - o e il - il B) Rl B e U ¥ e =
=L
.r_,
l-_ﬂ . 1x
- - - = P o . t - L3 - p o e el . & -
» T |
il ¥

Obr. 1.6: Program pre LEGO MINDSTORMS NXT-G. Prevzaté z [3].

LEGO League, ktory je pre deti vo veku od 4 az 16 rokov formou sitaze, ktord ma
u ucastnikov podporovat kritické a tvorivé myslenie pri rieseni realnych problémov z
nasho sveta. FLL sa v USA zacalo organizovat este v roku 1998, ked vysla prva verzia
LEGO MINDSTORMS RCX a zrejme je stile najvic¢sou robotickou sitazou na svete.

1.1.4 Tretia generacia

Tretia generacia nesie meno LEGO MINDSTORMS Evolution, alebo skratene LEGO
EV3. Tato verzia robota dovolovala takzvané datalogovanie informacii, programovanie
cez datovy kabel a Bluetooth, ¢i za pouzitia iPad alebo Android zariadenia, notebookov,
¢i desktopov. Bola programovana vo vynovenom grafickom systéme, ktory pouzivala
druhé generacia ale vSetky informacie a nastavenia jednotlivych blokov programu boli
viditelné bez dalsieho klikania. Ukazka programu je na obrazku 1.7. Disponovala ovela
vacsim vypocCtovym vykonom a jej pocita¢ bezal na opera¢nom systéme Linux - ¢o
zaroven spodsobovalo dlhy Start a vypinanie. Podporovala aj externy USB modul pre
komunikaciu cez WiFi. Na obrazku 1.8 je ukdZzka robota zlozeného z komponentov tejto
generacie.

Od roku 2003, kedy vznikol jazyk Scratch na MIT sa postupne rozsiril a ziskal si
priazen pouzivatelov i didaktikov informatiky. Je populéarny pre svoju nenéroc¢nost a
jednoduchost. Dokonca existoval doplnok na programovanie LEGO robotov cez klasicky
Scratch. To viedlo aj spolo¢nost LEGO Education, aby vydali nova verziu prostredia na

programovanie svojich robotov v jazyku, ktory vychédzal zo syntaxe a vizuélnej podoby

8 KAPITOLA 1. VYCHODISKA

Obr. 1.8: Ukazka modelu zo stavebnice LEGO MINDSTORMS EV3. Prevzaté z [4].

jazyka Scratch. Na popularite medzi ziakmi narastol aj jazyk Python, ktory bol tiez
zakomponovany medzi moznosti, ako programovat stavebnice LEGO Education. Na
obrazku 1.9 je ukazka programu v jazyku WordBlocks pre neskorsie stavebnice Spike

Prime, ale aj pre EV3 vydalo LEGO Education podobny softvér a programovaci jazyk.

1.1.5 Stvrta generacia

Tato generacia nesie meno LEGO Spike Prime. Lisi sa tym, Ze nemé displej, porty st
univerzalne, ¢ize uz nie st vyhradené iba pre motor alebo senzor, ma 5x5 LED maticu
a bezchybny gyroskop v troch osiach. Na programovanie slizia uz len jazyky Scratch a
Python. Robot je programovatelny cez datovy kabel alebo pouzitim Bluetooth a nejakua
dobu disponoval aj modulom pre WiFi ako EV3, ktory nakoniec tiez vypli. Vzorovy

robot zlozeny z komponentov stavebnice je na obrazku 1.10.

1.2 Jazyky na programovanie robotov

Ako sme spomenuli v ivode, pre poslednii generéaciu robotickych stavebnic LEGO Edu-
cation Spike Prime LEGO Education pontka tri jazyky — Icon Blocks - bez textov, pre
ziakov 1. stupna, Word Blocks — podobny jazyku Scratch a Python — plne textovy

1.2. JAZYKY NA PROGRAMOVANIE ROBOTOV 9

A e i5 doserihan = @ cnw ? _then

statmotor (™ »

start motor ') w

Av is farmerthan~ @) ome 2 ihen
start motor) »

statmotor (¥ »

Av i famertan~ (@) om- 2 hen

@ E+F » siop motor

Obr. 1.9: Ukazka programu v jazyku Scratch. Program som vytvoril v systéme LEGO
Education Spike.

Obr. 1.10: Ukazka modelu zo stavebnice LEGO Spike Prime. Prevzaté z [4].

10 KAPITOLA 1. VYCHODISKA

programovaci jazyk. Interpretované jazyky, ako napr. jazyk Python, si vhodné pre
zaciatocnikov ako tivod do programovania, ale nie st vhodné pre nizkoturoviové prog-
ramovanie robotov, kde nam zalezi na kazdej milisekunde. Kazda zbyto¢na operacia,
ktort musi riadiaca jednotka urobit navyse, nas len vzdaluje od toho, ¢o sme v prog-
rame napisali. Python je velmi dynamicky, alokuje a dealokuje si paméat kedykolvek to
on uznéa za vhodné a vtedy je v rychlosti nekonzistentny. Prvykrat mu nejaka operécia
trva urcity pocet milisekund a ked tu isti operaciu zavolame o chvilu neskér, tak to
moZe trvat aj niekolko nasobne dlhsie, lebo prave v tej chvili spustil vonatorny garbage
collector. Dalsou nevyhodou je, ze programator musi ovladat cely rad prikazov z kniz-
nice, ktord mu spristupniuje ovladanie hardvéru. Jazyk Scratch moéze byt neprakticky
pre programovanie zlozitejSich robotickych tloh a podobne ho obmedzuje rychlost ako
Python, kedZe jeho kod sa tiez kompiluje do MicroPythonu. Pri programovani robotov
je potrebné naprogramovat rozhodovanie pre rozne situécie, v ktorych sa bude robot
nachadzat. To pri linedrnom zapise programového toku alebo pri vyuziti globalnych
udalosti - oboje st typické charakteristiky scratchového jazyka Word Blocks, mdze byt

zapis neprehladny, komplikovany, chybny a tazko zrozumitelny.

1.2.1 Konecné stavové automaty

Koncept stavovych automatov sa postupne vyvinul od uvedenia Turingovych strojov v
roku 1936 Alanom Turingom. Kone¢né stavové automaty (finite-state automaton, ¢asto
oznaovany aj ako finite-state machine) podrobne analyzovali J. D. Ullman a J. E.
Hopcroft v knihe Uvod do teérie automatov, jazykov a vypoéctov [8]. Konecny automat
(KA) pozostava z konefnej mnoziny stavov a mnoziny prechodov zo stavu do stavu,
ktoré sa uskutocnuju, ak je na vstupe skonzumovany symbol zo vstupnej abecedy. Pre
kazdy vstupny symbol existuje najviac jeden prechod z kazdého stavu (moZno aj spét
do toho istého stavu). Jeden stav, zvy¢ajne oznaceny go, je pociato¢ny stav, v ktorom
automat zac¢ina. Niektoré stavy su oznacené ako koncové alebo akceptacné stavy. KA
sa dé& vizualizovat suvislym orientovanym grafom, nazyvanym prechodovy diagram,
nasledovne. Vrcholy grafu zodpovedaju stavom KA. Ak existuje prechod zo stavu ¢
do stavu p na vstupe a, potom v prechodovom diagrame existuje orientovana hrana
oznacené a spajajica stav g so stavom p. KA akceptuje retazec x, ak sled prechodov
zodpovedajucich symbolom z vedie z poc¢iatocného stavu do akceptacného stavu.

Ak ale chceme, aby robot okrem pozorovania svojho prostredia a reagovania zme-
nou svojho stavu vykonaval aj nejaka aktivitu, potrebujeme miesto, kam to zapisat.
Tomuto popisu vyhovuje kone¢ny stavovy prevodnik (finite-state transducer). Tento
automat ma nielen vstupni pasku, ale aj vystupni. Symboly zapisované na vystupnu
pasku moézeme interpretovat ako akcie, ktoré ma robot vykonavat. Struc¢na definicia sa

nachédza napr. v ¢lanku [9]. Koneény stavovy prevodnik T'= (X, A, Q, I, F, E, X, p) je

1.2. JAZYKY NA PROGRAMOVANIE ROBOTOV 11
8-tica, kde:

e Y je konecné vstupna abeceda prevodnika,

A je kone¢na vystupnéa abeceda,

@ je konefné mnozina stavov,

I C @ je mnozina pociato¢nych stavov,

F C @ je mnozina koncovych stavov,

ECQx(XU{e}) x (AU{e}) x Q je konetna mnozina prechodov,

e)\: [— A* je podiatotna vystupna funkcia, ktora zobrazuje I na A*, a

p: F— A* je koncovéa vystupné funkcia, ktora zobrazuje F' na A*.

Stavovy prechod e € E, ozna¢ujeme i[e] jeho vstupny symbol, ple] jeho vychodis-
kovy alebo predchadzajici stav a nle] jeho cielovy alebo nasledujuici stav, w(e] jeho
vahu (v pripade vaZenych automatov), ole] jeho vystupny symbol (v pripade prekla-
dacov). Pre stav ¢ € @, oznacujeme FE[q] mnozinu prechodov odchédzajucich z ¢. V
celej tejto praci budeme mat ¢asto na mysli kone¢né stavové prevodniky, ked budeme
pisat o stavovych automatoch - ¢o je ovela viac pouZivany a preto lepsie zrozumitelny
pojem. Prevodniky mézeme totiz stale chapat iba ako uréitym spésobom obohatené
automaty. Obohatenie, ktoré vyuzijeme bude spocivat nielen v pridani akcie do sta-
vového prechodu, ale aj vo vytvarani lokdlnej paméte, pod-automatov a nahradenie
jednej akcie celou postupnostou akcii. Praca sa nezameriava na formalne odvodzovanie
a dokazovanie, kde by tieto rozdiely boli podstatné, ale vyuziva najmé zédkladni povahu
struktury tychto formalizmov, ktora je rovnaké.

Takyto stavovy automat vhodne popisuje spravanie programovanych robotov. Tito
myslienkou vyuzil aj Rodney Brooks, ktory sa povazuje za otca Behaviour-Based ro-
botiky, ktorej principy sa pouzivaji uz vySe dvadsat rokov. Vyuzil ho aj vo svojom
systéme programovania s ndzvom Subsumption Architecture, kedy staviame spravanie
robota do vrstiev a az ked méame spravne uchopené nizsie spravanie, programujeme
spravanie na vyssej vrstve, ktoré interaguje s prvkami na nizsich vrstvach. Pre priklad
uvediem pripad, kedy chceme robota naucit behat cez prekazky. V prvom kroku ho na-
ucime stat (udrziavat rovnovahu), v dalsom kracat a skakat, kde mozeme interagovat so
spravanim na udrziavanie rovnovahy, ktoré sme naprogramovali skor. f)alej ho nau¢ime
behat, kde opéat moézeme interagovat s krac¢anim a napokon mdzeme programovat beh
cez prekazky, ktoré bude interagovat s viacerymi spravaniami.

Dovody, preco pouzivat koneéné stavové automaty pre programovanie robotov,

dobre zhrnuli autori v publikacii 7], kde piSu, Ze stavové automaty sa jednoducho

12 KAPITOLA 1. VYCHODISKA

—=| Enplors World

REMEEF

information > w Arcand Actuntors

Made: This ks

Eaparndari
Fha Mahals
Posiien + Awedid Dbhjecta

Obr. 1.11: SubSumption Architecture z knihy [6]

pochopitelné, casto pouzivané medzi programatormi ako komunikacia a casto uz samé
o sebe tvoria dokumentaciu. Je jednoduché sledovat, v ktorom stave sa dany robot

nachadza a l'ahko sa tak hladaju chyby v programe.

1.3 LEGO Spike Prime

Ako sme si uz popisali tuto stavebnicu v ¢asti 1.1.5, tohto robota je mozné programovat
pomocou roznych jazykov. Hardvér riadiacej kocky pozostava z procesora STM32F413
s 320KB pamite RAM a 1MB paméte flash, 32MB interného tloziska, Siestich por-
tov pre vstupno-vystupné zariadenia, z ¢oho st dva vysokorychlostné a styri obycajné,
maticovym LED displejom 5x5, konektorom pre micro-USB kébel, ktory okrem prog-
ramovania sliZi aj na inStalaciu firmvérov a nabijanie batérie (podstatné vylepSenie
oproti EV3), Bluetooth Clasic a Bluetooth Low Energy, gyroskopom a akcelerometrom
pre tri osi a zvukovym vystupom. Informécie prehladne spisal Geoffrey Daniels na svo-
jom GitHub repozitari [10]. Okrem vstavaného hardvéru stavebnica obsahuje motory
na jednosmerny prud so zabudovanymi otackovymi senzormi, ultrazvukovy senzor na
meranie vzdialenosti, senzor na meranie sily (a dotyku) a farebny/svetelny senzor.
Na ilustraciu prace s touto stavebnicou pouzijeme tlohu, kde robot ma prenasle-
dovat objekt, ktory je pred nim. Ked sa objekt priblizi prili§ blizko, tak robot za¢ne
cuvat a naopak, ked je objekt vzdialeny, priblizi sa k nemu. Pre tuto tlohu si zostrojime
robota s ultrazvukom, aky je vyobrazeny na obrazku 1.13. Je to zjednoduSena verzia
prikladu z prirucky [11], tloha 16. My ale pouZijeme iba jeden senzor. Obrazok 1.12 je

fotografia funkéného programu a tu je jeho vysvetlenie:

e 1. zadiatok programu, ktory sa spusti hned po prijati programu do riadiacej

jednotky alebo po opatovnom stlac¢eni ovladacieho tlacidla

1.3. LEGO SPIKE PRIME 13

@ E+F v setspeedto (@) %

A w i5 closerthan = o cmw ? _lhen

startmotor (™ »

EFFE rwwn R

start motor ¥) «

5. [A+ is farherthan = @ cm= ? _then
5.1 start motor) w
5.2 start motor (M »

6. Av & coserthan~ @) en- 2> and Av is fameran~ @) om- 2 then

Obr. 1.12: Program, ktorého vykonédvanim robot prenasleduje objekt, ktory je pred

nim.

e 2. nastavenie rychlosti robota na 25% maximalnej rychlosti

3. nekone¢ny cyklus programu

4. podmienka, v ktorej sa pytame, ¢i objekt pred nami je blizsie ako 10 centimet-

rov. Ak je tdto podmienka splnené, tak:

— 4.1 a 4.2 zapnutie motoru E v smere hodinovych ruci¢iek a motoru F v

opac¢nom smere

5. podmienka, v ktorej sa pytame, ¢i objekt pred nami je od nas dalej ako 20

centimetrov. Ak je tato podmienka splnené, tak:

— 5.1 a 5.2 zapnutie motorov E a F v opacnom smere ako v bodoch 4.1 a 4.2

6. podmienka, v ktorej sa pytame, ¢i objekt pred nami je dalej ako 12 centimetrov

a zaroven blizsie ako 18 centimetrov. Ak je tato podmienka splnena, tak:

— 6.1 vypneme oba motory

Spravanie robota s takymto programom mozeme modelovat pomocou stavového

automatu ako na obr. 1.14. Automat pozostéva z troch stavov: Wait, GoBack a Follow,

14 KAPITOLA 1. VYCHODISKA

Obr. 1.13: Robot s ultrazvukovym senzorom. Obréazok bol vytvoreny pomocou stud.io

aplikacie.

DistanceCM = 20 DistanceCM > 50

Distance < 15 Distance < 45

Obr. 1.14: Robot pohybujici sa zavisle od vzdialenosti od objektu podla stavového

automatu vytvoreného na [12].

medzi ktorymi prechadza zavisle od toho, v akej vzdialenosti je od objektu. Ak si pod
prechodmi predstavime aj akcie - prikazy na ovladanie pohybu motorov, dostali by sme

kone¢no-stavovy prekladac¢, ktory by mohol takyto program nahradit.

1.3.1 Programatorské prostredia

Pre programovanie tychto stavebnic existuje softvér priamo od LEGO Education, ktory
je v online podobe aj ako aplikidcia. Okrem tohto softvéru vieme pouzivat aj softvér s
nazvom Pybricks [13], ktory mé tiez online aj offline verziu. Ponika programovanie v
jazyku Python a spoplatnent verziu blokového jazyka v style jazyka Scratch, instaléciu
svojho firmvéru - odlisného od standardného firmvéru LEGO a ukazky casti kodov,

ktoré pracuju s kniznicou na obsluhu hardvéru v jazyku Python.

Pybricks a firmvér

Cely softvér Pybricks ma verejny zdrojovy kod na GitHub-e [14]. V repozitari pybricks-

code su zdrojové subory aplikicie, ktoré je pisana v jazyku TypeScript nad framework-

1.3. LEGO SPIKE PRIME 15

om React. pybricksdev je zdkladné nastavenie pre pokrocilejsich programatorov, ktory
chct programovat v prostredi Visual Studio Code. Samotny firmvér je v repozitari
pybricks-micropython. Tento repozitar ma v stromovej Strukttre niekolko pre nés zau-
jimavych casti. Prva ¢ast je prie¢inok bricks, ktory obsahuje pravidla, podla ktorych
sa vytvori firmvér a v ktorych potom aj tento firmvér najdeme (/bricks/primehub/buil-
d/firmware.zip). Druhou doélezitou ¢astou tohto repozitara je priecinok /lib/pbio/sys/,
v ktorom su prikazy na ovlddanie hardvéru. V main.c sa nachadza hlavna funkcia, v
ktorej robot ¢aka na vypnutie alebo spustitelny kod, ktory nésledne vykona. Dalsou
potrebnou ¢astou je subor /bricks/ common/source.mk, v ktorom si vypisané vsetky
stubory, ktoré sa pri vytvarani firmvéru pouzija.

Pybricks aplikacia je rozdelena na dve ¢asti. V Tavej ¢asti mame dve ikony, list a
ozubené koleso, a navigaciu. Ozubené koleso symbolizuje nastavenia. Tu si vieme menit
farbu pozadia editora, instalovat firmvér, ndjdeme tu vela uzito¢nych odkazov, napri-
klad na tvod do tohto systému, vzorovych projektov alebo miesto, kde vieme hlasit
akékolvek problémy s tymto softvérom. Druh& moznost, ktort predstavuje prazdny
list, slizi na spravu nasich programov. Jednotlivé programy vieme nahravat, stahovat
a vytvarat nové. Pri vytvarani sa nas aplikacia opyta na jazyk, v ktorom budeme nasho
robota programovat a nazov programu. V pravej ¢asti hore ndjdeme styri tlac¢idla. Pr-
vym sa pripajame na nasu riadiacu jednotku pomocou Bluetooth, druhym spustame
program, tretim ho vieme vypnit a Stvrtym spustime konzolu, v ktorej vieme posielat
robotovi prikazy postupne.

Pri tvorbe firmvéru je potrebny preklada¢ pre 32-bitovy ARM (cross-compiller),
kedZe jeho kod je napisany v jazyku C. Pre vytvorenie firmvéru pre stavebnicu LEGO
Spike Prime potrebujeme byt v najvysSom prie¢inku repozitéra a v opera¢nom systéme
Linux zavolat prikaz make primehub. Na uspesni instalaciu potrebujeme mat aktuali-
zované ovladace, na ¢o nés upozorni aj aplikacia pri netspesnej instalacii. Po tispesnom

vytvoreni firmvéru v aplikicii urobime nasledujici zoznam tikonov v danom poradi:

1. v lavej ¢asti hlavného menu otvorime ozubené koleso, ¢o predstavuje nastavenia
2. v navigécii v ¢asti Firmware zvolime moznost Install Pybricks Firmware
3. vyskakovacie okno v dolnej ¢asti v strede mé moznost Advanced, klikneme na fiu

4. do zobrazeného ramceka presunieme nas vytvoreny firmvér alebo ak klikneme

don, tak nam to otvori prieskumnika, v ktorom si nas firmvér vyhladame

5. po vlozeni firmvéru by ho aplikicia mala rozoznat, ¢o sa prejavi tym, ze ndm v

hornej ¢asti uz neukazuje moznosti jednotlivych stavebnic

6. potvrdime tlacidlom Next

16 KAPITOLA 1. VYCHODISKA

7. odsthlasime licenciu v zaskrtavacom boxe a klikneme na Next

8. pomenujeme si nasu riadiacu jednotku, ktorej nazov sa nam bude zobrazovat pri

pripajani na nu a potvrdime tlacidlom Next
9. postupujeme podla navodu:

(a) odpojime riadiacu jednotku a vypneme ju

(b) za staleho drzania tla¢idla Bluetooth pripojime kocku déatovym kablom k
pocitacu

(c) tlacidlo Bluetooth pustime potom, ¢o za¢ne blikat na razovo-zeleno-modri

farbu
10. klikneme na tlac¢idlo Install

11. aplikdcia nam pontiikne nové vyskakovacie okno, v ktorom zvolime nasu riadiacu

jednotku a potvrdime tla¢idlom Connect

12. uspesné instalacia je signalizované rozsvietenim LED matice na riadiacej jednotke

alebo zmiznutim ukazovatela priebehu instalacie v aplikicii.

1.4 Programovanie grafickej aplikacie v C#

Programovanie aplikacii v jazyku C# je jednoduché a efektivne vdaka pouzivaniu soft-
vérov na to urcenych. Jazyk je objektovo orientovany a o spravu paméte sa nemusime
starat, kedZe ju spravuje mechanizmus garbage collector. Vyvojové prostredia pont-
kaju mnozstvo roznych predprogramovanych komponentov, uzitoénych a efektivnych
kniznic a okolo tychto aplikacii je Sirokd komunita a podrobna dokumentacia. Aplikacie
vacsinou vyuzivaja framework .NET. Pri vytvarani novej aplikacie vytvorime novy pro-
jekt, zvolime moznost Windows Forms App s .NET Framework v zélozke Deskop. Po
potvrdeni tlac¢idlom Create ndm softvér vytvori prazdnu aplikaciu, ktorda po spusteni
otvori nasu novovytvorenu aplikaciu. Spustit ju vieme z editora a posledni spustent
z editora vieme spustit v prie¢inku, kde je nas projekt /nazovProjektu/nazovProjektu-
/bin/Debug/nazovProjektu.exe. Automaticky vygenerovany kod novej aplikicie moze
vyzerat ako v ukazke 1.1. Prikaz Using znamena to isté, ako v inych jazykoch Include.
namespace je totozny s prikazom, ktory sa pouziva v jazyku C-++-, ¢ize namiesto vola-
nia WindowsFormsApp1.Form1() nam postaci Forml(). Funkcia public Form1()... je
konstruktor nasej triedy, ktory inicializuje vSetky grafické komponenty. Neodporuca sa
do tejto funkcie ¢okol'vek pisat, lebo ak to interaguje s nejakym grafickym komponen-
tom, ktory este nebol inicializovany, tak to moze sposobit spadnutie nasej aplikacie.

Ak mame nejaky kod, ktory chceme spustit hned po otvoreni aplikacie, je potrebné na

1.4. PROGRAMOVANIE GRAFICKEJ APLIKACIE V C# 17

Algoritmus 1.1: Automaticky generovany kod po vytvoreni novej aplikacie C#

using System;

using System .Windows. Forms;

namespace WindowsFormsAppl

{

public partial class Forml : Form

{

public Forml ()

{

InitializeComponent ();

Algoritmus 1.2: Automaticky generovany kod pre grafické komponenty v C#

private void buttonl Click(object sender, EventArgs e)

{

throw new System.NotlmplementedException ();

to pouzit funkciu public Form1 Load()..., ktora sluzi presne pre tieto ucely. Vytvorit
ju je potrebné cez zalozku Design v spodnej Casti softvéru.

V softvéri vieme vSetko grafické ruc¢ne programovat, alebo si v zélozke zvolime na-
miesto Code zalozku Design, ¢o ndm otvori celd grafickd paletu néstrojov. Komponenty
vieme pridavat do naSej aplikacie, odoberat, skalovat, menit rozne atribaty a po dvoj-
kliku na tieto komponenty, ak su interaktivne, sa nam vygeneruje kod 1.2, v ktorom
vieme programovat spravanie. Ak chceme takyto kod neskor odstranit, je nutné to robit
opét cez Design, alebo tuto funkciu néjst v sibore Forml.Designer.cs a vymazat ju i

odtial'to.

1.4.1 Serializacia v aplikaciach C#

Serializacia je ukladanie objektov v paméti do formétu, ktory sa da prenasat medzi
pocitaémi, alebo ulozit do vonkajsej paméte pocitaca a neskodr pri ¢itani opat vytvo-
rit povodne objekty. Na serializaciu v C# mozno vyuzit bud standardné .NET API
(napr. XmlSerializer/BinaryFormatter), alebo je mozné pouzit iné kniznice, ktoré sa

daju velmi l'ahko a rychlo nainstalovat. Bindrna serializacia je nebezpecna a spdsobuje

18 KAPITOLA 1. VYCHODISKA

problémy pri aktualizacii softvéru na novi verziu. Vhodna kniznica pre naSe potreby
je Newtonsoft.Json, ktori nainstalujeme v ¢asti Tools > NuGet Package Manager >
Manage NuGet Packages for Solution, kde tuto kniznicu vyhladame a nainstalujeme.
Potom staci pridat string jsonString = JsonConvert.SerializeObject(Object, settings);,
kde jsonString je textovy retazec vo formate JSON. Ten néasledne moézeme zapisat do
siboru. Kniznica serializuje vSetko, ¢o je v triede Object pristupne metédami get; set;
a pri tom pouziva nastavenia, ktoré si v argumente settings. Vieme tam nastavit pocet
medzier, ignorovanie rekurzivnych zavislosti a mnoho dalsich parametrov. Pri ignoro-
vani zavislosti si treba dat pozor, lebo kniZnica si neurobi nejaka tabulku podla ktorej
tieto zavislosti pri deserializicii naspét nastavi, ale vSetky tieto parametre serializuje

ako null.

Kapitola 2
Specifikacia a ciele prace

V tejto kapitole najdeme ciel bakalarskej prace, Specifikidciu funkcionality a dovody
preco sme zvolili prave takéto rieSenie.

Tak ako sme uviedli v casti 1.2.1, stavové automaty, presnejSie konecné stavové
prekladace st vhodny, prehladny a dokumentujici spésob ako spravne popisat spra-
vanie robota v rozli¢nej situacii. Cielom préace bude umoznit uzivatelom programovat

robotov takymto spésobom. Uloh bude v tejto praci niekolko a to nasledovnych:
e tvorba aplikicie pre vytvaranie kone¢nych stavovych prevodnikov
e pisanie firmvéru na ¢itanie a vykonavanie takychto automatov

e Uprava aktualnej webovej aplikacie od Pybricks pre posielanie nami vytvorenych

automatov

2.1 Softvér na tvorbu automatov

Takyto softvér by mal uzivatelovi dovolovat tvorbu a editaciu paralelnych a vnorenych
automatov, vytvaranie stavov, ich editovanie a mazanie, medzi stavmi tvorit prechody,
ktoré budi obsahovat podmienky, za ktorych sa stav robota zmeni a zoznam akcif,
ktoré pri tejto zmene ma robot vykonat a vytvaranie datovych Struktir pre lokalnu
pamét na ovladanie v rdmci jedného automatu a globalnu pamét, ktora bude sluzit na
komunikaciu medzi automatmi. V softvéri by mala byt moznost uloZenia, na¢itania a

tvorby exportu nami vytvoreného automatu.

2.2 Novy firmvér

Robot bude vediet efektivne vykonavat naprogramované kone¢né stavové prevodniky.

Prevodniky bude mozné do robota prijat v predspracovanej podobe, ktora sa vyexpor-

19

20 KAPITOLA 2. SPECIFIKACIA A CIELE PRACE

tuje z aplikicie na tvorbu automatov.

2.3 Uprava webovej aplikacie

Webova aplikacia Pybricks sluzi ako komunikaény kanél medzi riadiacou jednotkou a
pocitacom. Upravena verzia bude umoznovat posielat robotovi exportované vytvorené
stavové automaty za tcelom ich nasledného vykonévania modifikovanym firmware. Za-

rovenn bude umoznovat vypisovat spravy z beziaceho automatu do svojej konzoly.

Kapitola 3

Navrh

V nasledujtcej kapitole sa budeme zaoberat ndvrhom modelu jazyka, navrhom apli-
kécie pre tvorbu stavovych automatov, modifikiciou webového rozhrania a rozsirenim
stucasného firmvéru pre vykonavanie stavovych automatov. Niektoré z tychto navrhov
vizualizujeme obrazkom pre lepsSie vysvetlenie danej funkcionality alebo na zobrazenie

vztahu medzi jednotlivymi ¢astami.

3.1 Navrh modelu stavovych automatov

Stavovy automat, ktory bude moct uzivatel vytvorit, bude o ¢osi zlozitejsi od konecéno-
stavovych prevodnikov, ktoré sme spominali v ¢asti 1.2.1, ale o to viac mézu obohatit
stavovo definované spréavanie robotov. Ukazku navrhu je mozné vidiet na obrazku 3.1.
Samotné spravanie bude mozné rozdelit do automatov (paralelnych automatov), ktoré
sa po spusteni za¢nu vykonavat sibezne. Kazdy automat bude obsahovat prave je-
den inicializaény stav, neprazdnu mnozinu kone¢nych stavov a dal$iu mnozinu stavov

rozneho typu. Tieto typy st

1. prazdny stav, ktory je zékladny a po tom, ¢o sem program vstipi, tak sa nic¢

navyse nedeje

2. aktivny stav, ktory bude obsahovat zoznam prikazov, ktoré sa budd v urc¢itom

¢asovom intervale dookola vykonavat pokial program tento stav neopusti

3. stav s vnorenym automatom, do ktorého ked program pride, tak sa spusti vyko-
navanie vnoreného automatu, ktoré sa ukonci vtedy, ked vnoreny automat vojde
do jedného z konecnych stavov. Tu bude mat uzivatel moZznost nastavit takzvany

FExit code, ktory bude mdct pouzit v podmienkach prechodovych funkcii.

Medzi jednotlivymi stavmi bude mozné vytvarat prechody, ktoré budi obsaho-

vat podmienky, za ktorych prechod z jedného stavu do druhého nastane a zoznam

21

22 KAPITOLA 3. NAVRH

Local memory

Left CT
T © 3 'X:\C XIT T
N e ERdOfLire—

C
Init T C bstacle\
\ S CT Local
o T\ CIT ocal memory

c T
C C

Init > Beep ¥reeWay—>
T o T T

Right

v -

Obr. 3.1: Navrh grafického zobrazenia automatu za pouzitia nastroja Figma [15].

akcii, ktoré sa pri danej zmene maju vykonat. Ziaden prechod nemdéze smerovat do
inicializa¢ného stavu a ziaden prechod nemoéze smerovat z konecénych stavov do iného
stavu. Medzi kazdymi dvoma stavmi moze existovat nanajvys jeden stavovy prechod.
Je mozné zadat inicializa¢ny skript (funkciu), ktora sa vykona predtym, ako automat
prejde do svojho pociatoéného stavu, ¢ize zoznam instrukcii, ktoré sa maja vykonat

pred spustenim daného automatu. Kone¢né stavy mozu mat dva vynimo¢né prechody:

1. Super prechod, ktorého podmienka sa kontroluje neustéle pocas vykonavania ak-
tualneho automatu (¢ize ak je splnena hned po vstupe do tohto automatu, tak
vykonavanie sa hned ukon¢i, kedze program prejde do koneéného stavu) a obsa-

hovat méze zoznam instrukcii na vykonanie

2. a konec¢ny prechod, ktory obsahuje zoznam instrukcii a zaroven sluzi na zavereéné
ulozenie dat do globalnej paméte alebo nastavenie Fxit code pred odchodom z

daného automatu.

Automaty budu obsahovat lokdlne a globélne premenné, ktoré budu ¢isla, znakové
retazce a boolovské hodnoty. Lokalna premenna bude dostupné pre dany automat,
ktorému bola priradené, zatial ¢o globalna bude viditelna vSetkym paralelnym aj vno-
renym automatom. Medzi premenné patria i inStancie alebo odkazy na nainicializované

zariadenia (motory a senzory).

3.2. NAVRH MODELU JAZYKA PRE AKCIE V AUTOMATOCH 23

Algoritmus 3.1: Ukézka modelu jazyka

define (x, int, 2)
define(y, int, 5)
define(z, int 0)
sum(z, X, V)

print _value("z=", z)

3.2 Navrh modelu jazyka pre akcie v automatoch

Syntax prikazov, ktoré budu reprezentovat akcie vykonavané na stavovych prechodoch,
alebo skripty vnutri aktivneho stavu vychadza zo syntaxe jazyka Python, ¢o bude zjed-
nodusenim pre velku ¢ast uzivatelov. Operaciu sa zapisuju pomocou nézvu funkcie a
vstupnych argumentov v zatvorkach oddelenych ¢iarkami, pozri ukazku 3.1. Prvé tri
riadky deklaruju a definuji nové premenné z, y a z, ktoré s typu Integer s réznou
inicidlnou hodnotou. Nasledne skript vykona sucet, ktorého vysledok sa ulozi do pre-
mennej z a sc¢itance st x a y. V poslednom kroku programu sa volé funkcia pre vypis
hodnoty do konzoly, ktorda ma dva argumenty. Prvym je textovy retazec a druhym
je samotna hodnota, ktora chceme vypisat. Takymto sposobom bude uzivatel vediet
volat funkcie, ktoré sa starajiu o obsluhu motorov, senzorov a dalsich zariadeni. Jazyk

umoznuje:

1. definovat premenné typu Integer, String a Boolean, operéacie s nimi ako napriklad

priradenie, s¢itanie, od¢itanie, nové definovanie
2. jednoduché logické operécie ako si logické And, logické Or, logické Not
3. ovladanie a volanie funkcii nad hardvérom
4. jednoduché cykly For a While

5. komunikaciu s poc¢itacom pomocou Bluetooth pre vypisy do konzoly.

3.2.1 Vzorové programy

Na demonstrovanie vyjadrovacej sily a jednoduchosti takého jazyka vyuzijeme nasledu-
juce ukazky. Kazdu ukazku si prejdeme krok po kroku a vysvetlime si, ¢o dany program

robi, na ¢o sluzi.

24 KAPITOLA 3. NAVRH

Sledovanie objektu K tejto ¢asti patri program v ukézke 3.2. Na zaciatku je defi-

nicia a deklaracia piatich premennych:

1. distance bude sluzit na uchovavanie si vzdialenosti, ktort budeme ziskavat z ul-

trazvukového senzora
2. condition bude slazit na uchovavanie si logického vysledku porovnania
3. follow je premennd, ktora vyuzijeme na opakovanie cyklu While

4. sensor je premenné alebo odkaz na instanciu senzora, ktory bude pripojeny na

porte A

5. base, je tiez premenna alebo odkaz na instanciu dvoch synchronizovanych moto-

rov, kde I'avy motor je na porte B a pravy motor je na porte C

Na d'alsom riadku zac¢ina cyklus While, ktory je nekone¢ny, kedZe premenné follow sa
nikde nemeni. Vo vnitri cyklu je funkcia, ktord do premennej distance ulozi hodnotu
vzdialenosti zo senzora sensor. Néasledne sa tri porovnavania, kde sa vysledok ulozi
do premennej condition. Porovnéva sa hodnota premennej distance s konstantami 400,
100, 150 a 350. Ak sa splni jedna z prvych dvoch podmienok, tak sa zavola funkcia,
ktoré ovlada motory a pohyb spusti s rychlostou 200 milimetrov za sekiindu a uhlom

0 stupnov za sekundu. Ak je splnena tretia podmienka, tak sa motory zastavia.

Gyroskop a LED matica Tato c¢ast opisuje program v ukazke 3.3. Na zaciatku je

definicia a deklaracia Siestich premennych:

1. x a y pouzijeme na uchovanie si informacie o polohe bodu v ypsilonovej a xovej

osli

2. z_rotation a y_rotation budeme vyuzivat na uchovanie si informacie o nakloneni

riadiacej jednotky v danych osiach

3. condition_x a condition 1y vyuzijeme pre uchovanie si logickych kontrol, ¢i sa

riadiaca jednotka dostato¢ne vela naklonila v danej osi

V dalsom riadku je nekonecny cyklus While. Vo vnitri cyklu sa na zaciatku ziskava
velkost naklonu v osiach x a y, ktoré sa priradia do premennych. Potom sa kontroluju
vSetky moznosti, ktoré mozu nastat. Kocka je naklonen4 hore, dole, vpravo, vlavo alebo
nie je naklonend, a podla toho sa rozsvieti bod v maticovej mriezke so stopercentnou

silou podsvietenia.

3.2. NAVRH MODELU JAZYKA PRE AKCIE V AUTOMATOCH

Algoritmus 3.2: Program pre sledovanie objektu

25

define (distance , int, 0)

define

condition , bool, false)

(
(

define (follow , bool, true)
(

define (sensor , Sensor, A)
define (base, DriveBase, B+C)
while (follow)

{

get low distance(distance, sensor)
more (condition , distance, 400)
if (condition)
{

base run_forever(base, 200, 0)
}
less (condition, distance, 100)
if (condition)
{

base run_ forever(base, —200, 0)
}
between (condition , distance, 150, 350)
if (condition)
{

base stop(base)

26 KAPITOLA 3. NAVRH

Algoritmus 3.3: Program pre pracu s gyroskopom a LED svetelnym displejom
define (x, int, 2)
define . 2)

define rotatlon, int, 0)

define (condition x, bool, false)

(v,
(x
define (y_rotation, int, 0)
(
define (condition y, bool, false)
while (true)
{
matrix clear ()
get x rotation(x rotation)
get y rotation(y_ rotation)
more (condition x, x_ rotation, 40)
between (condition y, y rotation, —30, 30)
if (and(condition x, condition y))
{
redefine (x, 0)
matrix set pixel(x, y, 100)
}
less (condition x, x rotation, —40)
if (and(condition x, condition y))
{
redefine (x, 5)
matrix set pixel(x, y, 100)
}
between (condition x, x_ rotation, —30, 30)
if (and(condition x, condition y))
{
redefine (x, 2)
redefine (y, 2)
matrix set pixel(x, y, 100)

3.3. NAVRH APLIKACIE 27

3.3 Navrh aplikacie

Ako sme uvideli v podkapitole 1.4, jazyk C+# je pouzivany na rychlu tvorbu grafickych
aplikécii pre platformu Windows pre takzvané Windows Forms Applications. Aplikacia
bude musiet byt prehladné a lahko ovladatelné, na ¢o nam posluzia rozne komponenty,
akymi st napriklad tla¢idla, zoznamy, oznamovacie okna a dalSie predprogramované
funkcionality. Ukazku navrhu pouzivatelského rozhrania je mozné vidiet na obrazku
3.2.

V hornej ¢asti obrazovky sa bude nachédzat lista, ktora bude obsahovat niekolko
sekcii podla funkcie, ktoré buda pontkat. V prvej sekcii budu tlacidla pre tvorbu
novych paralelnych automatov, moznost ulozit alebo exportovat aktudlny stavovy au-
tomat, nacitat automat, ktory uZivatel niekedy v minulosti ulozil a moznost zavriet
aplikéciu. Citanie a ukladanie bude zabezpecené serializaciou. Export bude Specialny
format, kedy v8etky nézvy funkcii buda prekonvertované na ¢isla. V druhej sekcii buda
tlacidla zamerané na tvorbu stavov, ktoré pre mnozstvo pouzivania bude mozné zavo-
lat i klavesovymi skratkami. Posledna cast sa bude venovat sprave, presnejsie tvorbe
premennych.

Lava cast obrazovky bude vyhradena pre sumarizaciu aktualneho spravania robota,
ktoré predstavuju vsetky paralelné a vnorené automaty a vSetky premenné, s ktorymi
bude robot vediet pracovat, rozdelené to bude horizontalne, kde v hornej ¢asti bude
takzvany tree view, kde uzivatel bude prehladne vidiet, ktory vnoreny automat patri
ktorému automatu, jednotlivé automaty bude vediet zbalit a rozbalit, po kliknuti nan
bude mat moznost editovat ho alebo vymazat. V spodnej ¢asti bude obycajny zoznam,
ktory bude obsahovat vSetky premenné, ktoré uzivatel vytvoril. Pre prehladnost, jed-
notlivé typy premennych budu farebne rozlisené. Tak ako pri kliknuti na nejaky auto-
mat mé uzivatel moznost ho editovat, tito moznost bude mat aj tu. Po kliknuti na
meno premennej bude mat moznost menit meno, hodnotu alebo premennii odstréanit.

V pravej Casti sa bude nachadzat textové pole obsahujice vSetky mozné funkcie,
ktoré moze uzivatel pouzit. KedZe st vypisané v textovom poli, uzivatel ich bude moct
jednoducho kopirovat do stavovych automatov.

V strednej ¢asti obrazovky, ktorej bude vyhradené najviac priestoru, sa budu sta-
vové automaty vykreslovat. Pre jednoduchost a prehladnost sa bude vykreslovat vzdy
iba jeden automat a to ten, ktory bude zvoleny v l'avej ¢asti obrazovky a jeho meno bude
vypisané v hornej ¢asti. KedZe automat mdze obsahovat viac druhov stavov, tieto stavy
sa buda vykreslovat roznou farbou podla typu akého st. Medzi jednotlivymi stavmi
budi prechodové funkcie alebo prechody, ktoré bude mozné kreslit oblikom alebo lo-
menou ¢iarou, aby to bolo pre uzivatela prehladné, a smer prechodu bude oznaceny
sipkou. KedZe automat obsahuje vynimoc¢né prechody, tak tie buda zvyraznené odlis-

nou farbou. Interakciu so stavmi a prechodmi bude uskuto¢hovand pomocou mysi a

28 KAPITOLA 3. NAVRH

Main States Variables
movement Beeping for help press key H base_move()
Left base_stop()
Right motor_run()
Stop motor_stop()
CountingObstacles matrix_set_pixel()
Beeping matrix_clear()
gyro_is_ready()
more()
less()
equal()
and()
Motor A+B org)
Color c while()
Distance p "
Count 0 wait(Delay)
Delay 500 play_sound(2, [440, 880], 100)

ColorsString “*

Obr. 3.2: Navrh grafickej aplikacie za pouZitia nastroja [15]

klaves. Vsetky klavesové skratky budi vypisané na pracovnej ploche, alebo bude vy-
pisana klavesova skratka, po stlaceni ktorej sa vSetky skratky a celé ovladanie zobrazi
uzivatelovi. K podmienkam prechodov, zoznamom instrukcii ktoré sa maju pri zmene
stavu vykonat a dalsim obdobnym funkciam sa pouzivatel bude vediet dostat pomocou

tlacidiel, ktoré budu na takom mieste, aby bolo uZivatelovi jasné, k ¢omu patria.

3.4 NAvrh firmvéru

Nebudeme tvorit novy firmvér ale rozsirovat existujici od spolo¢nosti Pybricks, ktory
sme uz spominali v ¢asti 1.3.1. Firmware je ureny na prijimanie a Startovanie prog-
ramov v jazyku Python, ktoré s prelozené do bajtkédu dialektu MicroPython. Celu
tuto ¢ast nevyuzijeme. Firmvér vSak obsahuje mnozstvo uzitoéného koédu na riadenie
hardvérovych komponentov a to v roznych moédoch a ta ¢ast vyuzijeme. Napriklad
pre farebny senzor vieme ziskat priamo farbu, alebo RGB, alebo HSV a mnoho dal-
sich typov vystupov. V prvom kroku zjednodusime volanie tychto funkcii a to tym,
ze naprogramujeme API (podla navrhového vzoru Adaptér), kedy uzivatel napriklad
zavola pouzije akciu get low distance(), ¢o na pozadi zavola funkciu get data() s pa-
rametrom modu, ktory bezny uzivatel nepotrebuje vediet. Takto vieme pouzivatelovi
spristupnit mnoZstvo uzito¢nej funkcionality dostupnej priamo vo firmvéri.

Druhym krokom bude vytvorenie globédlnej paméte pre presun parametrov medzi
funkciami. Napriklad vyssie spomenuta funkcia potrebuje dva parametre. Prvym je
senzor, z ktorého bude ¢itat data a druhym je smernik do paméte, kam sa maji déata
ulozit. Vdaka tomu sa zo vSetkych funkcii stant funkcie bez parametra a bude mozné

smerniky na tieto funkcie zaradit do jednej tabulky a efektivne ich podla ¢isla fun-

3.5. NAVRH UPRAV WEBOVEHO PROSTREDIA 29

kcie/akcie pri interpretovani automatu zavolat v ¢ase O(1) potom, ¢o sa jej parametre
pripravia do globalnej struktiry parametrov.

Tretim krokom bude tieto funkcie ulozit do pola, pre jednoduchSiu interpretaciu
a Citanie stavovych automatov. Napriklad vysSie spomenutéa funkcia bude mat v poli
index 54. Cize pri tvorbe exportu automatu sa nepouzije nazov funkcie ale ¢islo 54.

Stvrty krok predstavuje priprava Struktir, ktoré buda slazit na uschovanie dat
ohladom stavovych automatov, VyuZijeme dynamické alokovanie paméte a kniZnice
na spravu dynamickych struktar. To vSak nie je také jednoduché, kedZze povodny fir-
mware je navrhnuty tak, aby dynamicka pamét bola dostupna predovSetkym micro-
pythonovskym programom. Celkovo je bezné (a je to aj tento pripad), Ze program
beziaci na embedded ARM architektire nemé dostupnt dynamickid paméat pomocou
tradi¢nych volani malloc() / free(). Systém bol vytvoreny vyuzitim kniznic ContikiOS,
ktory umoznuje 3 sposoby alokovania paméte: 1) bezna dynamicka pamét pomocou roz-
hrania MEMB - informécie o pamétovych blokoch nie st uloZzené priebezne na zaciatku
blokov ako to robi malloc(), ale v inej Casti pamiite, 2) $pecidlna manazovana pamét
podporujica defragmentéciu a 3) malloc(), ktory ale nie je odportac¢any a v tomto firm-
vér jeho pouzitie ani nie je mozné. Vyuzijeme teda alokovanie v style MEMB, ¢o si
vyziada urcita agendu naviac.

V dalsom kroku bude vytvorenie metody, ktora bude ¢itat vstup odoslany cez kon-
zolu webového rozhrania a z neho vytvarat vnatornia reprezentaciu datovych struktar
tak, ako to pouzivatel naprogramoval v naSej aplikacii, ktora bude potom pripravené
na interpretovanie automatu.

No a v poslednom kroku sa po odstartovani programu z webového prostredia auto-
mat odStartuje, t.j. bude interpretovat prijaty kod, spustat pozadované zoznamy akcif,
kontrolovat podmienky stavovych prechodov, udrziavat lokdlne aj globalne premenné
pouzité v automate a realizovat stavové prechody, ked buda podmienky splnené.

Vsetky tieto kroky bude potrebné neustale kontrolovat a testovat aby sme neskor
neobjavili neziadice spravanie, ktoré bude tazké odstranit. Firmvér ma predprogramo-
vané testy, ale nie st k nim navody, ako ich spustit a ako pripravit robota na takéto

testovanie.

3.5 Navrh tprav webového prostredia

Webova aplikidcia od spolo¢nosti Pybricks prejde taktiez zmenami. Momentélne je
mozné vytvarat dva druhy programov, ktorymi si blokovy program a Python. My
budeme implementovat moznost treticho typu a tym je stavovy automat. Automat
exportovany do Specidlneho interného formatu (v textovej reprezentacii) sa bude do

robota posielat tym istym tlac¢idlom ako sa posielali programy doteraz cez sériova

30 KAPITOLA 3. NAVRH

linku BlueTooth spojenia s robotom.

Kapitola 4
Implementacia

Tato kapitola sa zameriava na priebeh implementécie niektorych ¢asti navrhu a to tych,

ktoré boli problémové alebo zaujimavé.

4.1 Citanie dat zo senzorov

V celom firmvéri je jedina funkcia, ktora dostava data zo senzorov a takyto je jej pse-
udokod: error get data(legodev dev*, wint8 t, void**). Prvym parametrom je smernik
na zariadenie, z ktorého chceme ¢itat, druhym je mod, v ktorom ich bude zariadenie
spracovavat a tretim je smernikova referencia na premennt v pamaéti, ktora ukazuje na
strukturu, do ktorej sa ulozia data. Je pri tom pouzity typ void * a to preto, Ze kazdy
mod vracia iny typ dat. Tento typ dat ndjdeme pri definicii médov hned vedla. Lisia
sa poc¢tom bitov alebo aj po¢tom parametrov, preto treba pri kazdom ¢&itani pracovat
s datami osobitne. Preto sme rozsirili nas interface, kde pontkame uzivatelovi ¢itanie

tychto dat v roznych moédoch bez potreby tdrzby a spracovania vysledkov.

4.2 Ovladanie motorov

Pre pohyb je vo firmvéri mnozstvo funkcii a va¢sina z nich obsahuje mod, ¢o méa ro-
bit potom, ¢o pohyb ukoné¢i. Firmvér ndm nedovoli zavolat dva po sebe idice fun-
kcie, ktoré ovladaju pohyb motora, pokial sa prvy pohyb neukon¢il. Pre predstavu
si modzeme uviest spustenie motora, ktory oto¢i servomotorom dany pocet stupnov
danou rychlostou. Pseudokod je takyto: error servo run_angle(servo®, int, int, con-
trol_on_ completion). Poslednym parametrom urc¢ujeme mod, ktory definuje to, ¢o ma
robit motor po tom, ¢o splni tlohu.

Jednou z mozZnosti je, ze motor bude pokracovat v pohybe, ale uvolnime ho, aby
mohol prijat a vykonat dal$iu inStrukciu. Inou moznostou je, Ze motor zastavi a bude

drzat aktuélny uhol bez toho, aby mohol vykonat nova instrukciu. Pri programovani

31

32 KAPITOLA 4. IMPLEMENTACIA

by bolo pre uzivatela naro¢né sa zorientovat vo vSetkych tychto moédoch a tak vsetky
pohyby buda mat jeden a ten isty mod. Po vykonani inStrukcie sa motor zastavi a

dovoli vykonavanie dalsich instrukcii.

4.3 Bluetooth a komunikacia

Po nainstalovani firmvéru cez kibel je jedind moznost ako s robotom komunikovat
Bluetooth. Cez Bluetooth vieme nahrat cely program alebo cez konzolu pisat prikaz
po prikaze. Pri testovani ako robot prijima programy sme zistili, Zze webova stranka ma
zabudovanu kniznicu, ktora z programu v Pythone vyrobi bajtovy kod, ktory nasledne
posiela pomocou Bluetooth-u.

Riesenim je posielat nami vytvorené stavové automaty exportované aplikaciou po-
mocou konzoly webového prostredia, pretoze tidaje odoslané cez tito konzolu sa po-
sielaja kompletne a bez ziadnych tuprav. Na strane robota je funkcia, ku ktorej mame
jednoduchy pristup, ktora ¢ita z automaticky napliianého bufra BlueTooth komunikaé-
nej linky. Jej pseudokod je takyto: error bluetooth rr(uint8 t *, wint32 t*). Vstupné
parametre si dva. Prvym je smernik na pole, ktoré bude obsahovat vstupny retazec.
Druhym je smernik na ¢islo, ktoré bude popisovat mnoZstvo prijatych znakov. Bufer
nie je nekone¢ny ako ani pamét robota a tak ked je prendsané velké mmnozstvo dat,
ktoré chceme spracovavat v robotovi, tak je na mieste pouzit cyklus while, ktory sa
bude opakovat pokial hodnota, kam ukazuje smernik na pocet dat nebude nulova.

Takyto isty problém méa aj vysielanie dat z robota. Zasobnik, ktory plnime, méa
velkost priblizne 25 znakov, ¢ize ak chceme vysielat nejaky dlhsi retazec, tak je to
potrebné taktiez urobit pomocou while cyklu. Funkcia, ktora zapisuje do bufra, ma
dva parametre, kde prvym je pointer na zaciatok retazca, ktory chceme odvysielat a
druhym je dizka tohto retazca. Vystupom okrem kodu chyby je druhy parameter, ktory

po navrate z funkcie obsahuje mnozstvo dat, ktoré zapisal do vystupného bufra.

Kapitola 5

Vysledky

Tato kapitola obsahuje dve casti. Prvou castou su ukazky programov vytvorenych v
systéme navrhnutom v bakalarskej praci a v druhej casti sti spdsoby, ako sme testovali

funké¢nost a stabilitu programov.

5.1 Ukazky hotovych programov

Tu sa nachadzaju vysledky implementacii, ktoré sme si popisali v kapitole 4. Kazdua
Cast popisujeme samostatne s tym, ze hodnotime, ¢o sa nam podarilo, na aké problémy

sme pri tom narazili a ako sme ich riesili.

5.1.1 Aplikaicia na tvorbu automatov

Tato aplikacia splia vietky zakladne poziadavky, ktoré nam vznikaju pri tvorbe stavo-
vych automatov. Vieme vytvarat paralelne spistajice sa automaty, vnorené automaty
a mnozstvo stavov. Okrajové pripady su oSetrené a chyby, ktoré sa objavili pocas tes-

tovania boli analyzované a taktiez odstranené.

Na obrazku 5.1 mdzeme vidiet jednoduchy prototyp spravania robota, ktory sleduje
¢laru. Pri pohybe vyuZiva dva motory a farebny senzor, ktoré mozeme vidiet v Tavej

dolnej casti.

Na druhom obrazku 5.2 mézeme vidiet komplexnejsie spravanie robota. Tento prog-
ram popisuje robota, ktory sa pohybuje po priestore a pocas pohybu pocita objekty
troch farieb. Okrem motorov a senzorov vyuziva globalnu premennt, lebo robot sa
méa zastavit po tom, ¢o napocCita urcity pocet objektov. Hoci je zobrazeny iba jeden

automat, v lavom paneli mozno vidiet, Ze program pozostava z viacerych automatov.

33

34

Menu Newstate Variable

KAPITOLA 5. VYSLEDKY

fMovemenl Help: F1/H
— Movement 7
T
Init \.—&D
o Left
c|T o
cl(T x CTT
&, /’\/ L Finite0
/'T/D “
Name Value Right T
Color A
MotorLeft E
MotorRi.. F

Motor
get_status() Angle
Speed
stop()
run_time(speed, duration)
run_forever(speed)
run_angle(speed. angle)

Drive base

Distance Sensor:
get_low_distance_data()
get_high_distance_data()
get_single_distance_data()

Force Sensor.
get_raw_force_data()

Color Sensor.
Matrix
Sound
Gyroscope:
Butions

Printing

Obr. 5.1: Ukazka stavového automatu vytvoreného nasou aplikaciou

Menu Newstate Variable

Counting

B Counting
Found
T
Init
cl[® ‘
clT
c T cl|T
X =
Name Value Idle
Left A
Right B
Color C
Distance D

Obr. 5.2: Ukazka komplexného stavového

Help: F1/H

CTT
Finite2
e

T

automatu vytvoreného nasou aplikaciou

Motor:
get_status() Angle
stop()
run_time(speed, duration)
run_forever(speed)
run_angle(speed. angle)
Drive base
Distance Sensor:
get_low_distance_data()
get_high_distance_data()
get_single_distance_data()

Force Sensor.
get_raw_force_data()

Color Sensor:
Matrix:

Sound
Gyroscope:
Buttons:

Printing

5.1. UKAZKY HOTOVYCH PROGRAMOV 35

Pybricks Code

; [

Debug mode on.

0

Starting follow automata... l
Distance: 712
State: 0
Distance: 700
State: 1
Distance: 676
State: 1
Distance: 622
State: 1
Distance: 590
State: 1
Distance: 549
State: 1

Obr. 5.3: Ukézka webového rozhrania

5.1.2 Webova stranka

Ako sme uviedli pri implementéacii webového prostredia v casti 4.3, posielanie textovych
stborov cez tlacidla by si vyzadovalo rozsiahlejsie zdsahy do webového prostredia, na
ktoré nemame kapacitu a potrebovali by sme viac ¢asu na jeho upravu.

Na komunikiciu preto momentalne pouzivame c¢ast webu, ktora s robotom komu-
nikuje pomocou konzoly, ¢o mézeme vidiet na obrazku 5.3. V strednej ¢asti obrazka
vidime konzolu, v ktorej je pismeno "d", ktoré sme tam napisali pre zapnutie modu.
Tento mod zapol vypis hodnot senzorov a aktualneho stavu, v ktorom sa robot naché-
dza. Vypis nastava kazdych 200 milisektnd. Dalsf riadok potvrdzuje vypnutie alebo
zapnutie tohto médu. V trefom riadku je ¢islo 0, ktoré spusta prvy z troch predprog-
ramovanych automatov. Tento automat predstavuje spravanie, kedy sa robot snazi
udrziavat vzdialenost s objektom, ktory je pred nim v rozmedzi on 150 do 350 mili-
metrov. Pri spusteni a ukonceni jednotlivych automatov nas o tom informuje vypis v

konzole.

5.1.3 Firmvér

Firmvér od Pybricks je velky a robustny. Pri implementécii sme narazili na mnozstvo
problémov, ktorymi boli napriklad chybajtce znalosti hardvéru, nevysvetlenych skra-
tiek v nézvoch funkcii a konstant, slaba znalost pouzivania a operacie so smernikmi.

To zapric¢inilo niekedy velké problémy, ktoré si vyzadovali va¢Sie mnozstvo ¢asu na

36 KAPITOLA 5. VYSLEDKY

Obr. 5.4: Fotodokumentéacia z priebehu testovania na Robotickom kruzku.

implementaciu a testovanie, nez sa na zaciatku ocakavalo.

Uspesne sa nam podarilo vytvorit interface pre volanie funkcii na obsluhu hard-
véru, Vytvorenie globalnej paméte, pomocou ktorej si funkcie vymienaji parametre, s
ktorymi pracuji, spravu funkénosti komunikacie prostrednictvom Bluetooth-u ako pri
vysielani tak i pri prijimani. Nakoniec sme implementovali spracovanie a vykonavanie
nami vytvorenych stavovych automatov. To sme na konci podrobili taktiez testovaniu

a najdené chyby sme odstranili.

5.2 Testovanie

Tak ako sme si uz spominali vyssie, testovanie prebiehalo pocas celej implementéacie.
Niekol'kokrat sme dali programy vyskusat kolegom a na zaklade ich spétnej vézby sme
chyby opravovali a naro¢né alebo zlé ovladanie upravovali a menili. Vysledkom bola
aplikicia, ktorid sme dali otestovat uc¢astnikovi Robotického kruzku pri Spojenej Skole
sviatého Frantiska z Assisi v Bratislave, obr. (5.4).

V prvom kroku bol Ziakovi vysvetleny a na priklade popisany koncept stavovych
automatov. Nasledne mu bola ukazana préaca v aplikacii, aby ziskal prehlad ¢o vSetko v
aplikacii dokaze naprogramovat. Po tomto kroku dostal zadania, ktoré v asistencii riesil.

Jednou z tloh bolo vytvorit spravanie robota, ktory ma udrziavat ur¢iti vzdialenost

5.2. TESTOVANIE 37

Obr. 5.5: Na fotografii je program, ktory vytvoril tcastnik testovania.

od prekazky, ktora je pred nim. Ucastnik pochopil, ze takéto spravanie potrebuje po
prvotnom vstupnom stave dalSie tri aktivne stavy v ktorych bude ziskavat vzdialenost
od prekazky a tie si relevantne pomenoval ‘Stoj’, 'Dopredu’ a ’Dozadu’. V dalsom kroku
ich prepojil stavovymi prechodmi, kde nastavil podmienky prechodu a vsetky tlohy,
ktoré mé robot pri zmene stavu vykonat. Vysledny stavovy automat (5.5) nasledne
spustil v robotovi, ktory sa spraval presne tak, ako zadanie popisovalo. Testovanie sme
zachytili na fotografii na obr. 5.6. V pisomnej spétnej viazbe ucastnik napisal: ,, Tak

pacilo sa mi, Ze vsetko fungovalo a Ze je to taky zaujimavy spésob programovania.”

38

KAPITOLA 5. VYSLEDKY

Obr. 5.6: Na fotografii je zaznamenané testovanie programu.

Zaver

Hlavnym cielom tejto bakalarskej prace bolo vytvorit novy sposob, ako programo-
vat spravanie robotov zostrojenych zo stavebnice Spike Prime od spolo¢nosti LEGO
Education. Tymto sposobom st stavové automaty, ktoré vhodne vystihuji a popisuja
spravanie robotov. Pri tvorbe navrhu a implementacie sme sa pokusili zachovat ne-
naro¢nost programovacieho jazyka a priblizit sa grafickému programovaniu, akym je
Scratch. Dévodom potreby tohto nového sposobu je aj to, Ze pri komplexnejsich prob-
lémoch sa programy v jazykoch Python a blokovych jazykoch typu Scratch stévaju
neprehladné a tazko modifikovatelné.

Aplikacia na tvorbu stavovych automatov umoziuje uzivatelom vytvéarat programy
popisujiice spravanie robotov skibenim grafického a textového programovania. Aplika-
cia je prehladné a jednoduché na pouzivanie.

Webové rozhranie, ktoré slizi na komunikaciu medzi pocitac¢om a robotom nebolo
nijako upravované, ale zmenil sa sposob pouzivania. Namiesto doterajSicho nahravania
programov alebo ovladania robota pomocou konzoly, sa teraz konzola vyuziva na posie-
lanie reprezentacii stavovych automatov robotovi a interakciu s beziacim programom.

Firmvér robota bol modifikovany postupne v niekolkych krokoch. Prvym bolo vy-
tvorenie TahSieho pristupu k ovladaniu hardvéru, dalsim bolo vytvorenie globélnej pa-
méte, ktord slizi na posuvanie parametrov, ktoré potrebuji funkcie pre spravne fun-
govanie. Tretim krokom bolo sprevadzkovanie Bluetooth komunikacie pre posielanie a
prijimanie textovych retazcov. To je potrebné pre vypis premennych do konzoly, alebo
pre prijimanie textovych reprezentécii automatov, ktoré budi vlozené do konzoly. Stvr-
tym krokom bolo spracovanie vstupu a vytvorenie vniitornej reprezentécie stavového
automatu. Poslednym bolo otestovanie behu programu a vyladenie vsetkych chyb.

Implementované boli i moderné technoloégie ako napriklad kniznica sluziaca na se-
rializaciu alebo aplikacia vytvorena ako ‘Windows Form Application’. VSetky tri ¢asti
boli priebezne testované a kazda najdena chyba programu bola opravena.

Navrhnuté aplikacia splia stanovené ciele bakalarskej prace. Vysledkom je aplikacia,
v ktorej uzivatel programuje roboty pomocou stavovych automatov, webové rozhranie
pomocou ktorého vie tieto programy posielat robotovi a firmvér, ktory tieto stavové
automaty spracovava a vykonava.

V rémeci budtcich moznych vylepSeni préace by bolo mozné implementovat a rozsirit

39

40 Zaver

ju o dalgie funkcionality. Jednou z moznych tprav by mohlo byt v aplikacii vylep$it gra-
ficka stranku programu alebo implementovat rozne zlepSenia pouzivania tohto néstroja,
napriklad kontrolu textového kédu. Inym rozsirenim by mohlo byt webové prostredie,
ktoré by sme modifikovali tak, aby bolo mozné nahrévat celé subory s reprezentéaciou

stavovych automatov.

Literatara

[1] BatteryPoweredBricks: WIP In depth Lego Dacta retrospective video series, do-
stupné online: https: //www.eurobricks.com/forum/index.php? /forums /topic/190311-
wip-in-depth-lego-dacta-retrospective-video-series/ (naposledy navstivené
17.05.2024)

[2] BatteryPoweredBricks: Lego Dacta Test, YouTube video, dostupné online:
https:/ /youtu.be/OpHY71I5T-07si=Y-19RfcTDB0Od5R6Y (naposledy navstivené
17.05.2024)

[3] Luciano F de Medeiros, Luiz Roberto Cuch: Robética Educacional como Recurso
Pedagogico para Alunos de Baixo Rendimento: Relato de Experiéncia, EDUCERE
- XIIT Congresso Nacional de Educacao, 2017.

[4] Reduco Ltd.: FLL Casts, vzdelavaci portal, dostupné on-line:
https://www fllcasts.com/ (naposledy navstivené 26.05.2024)

[5] LEGO Education, webstranka, dostupné on-line: https://education.lego.com/ (na-
posledy navstivené 18.05.2024)

[6] Brooks R., Cambrian Intelligence: The Early History of the New AI, A Bradford
Book, 1999.

[7] Balogh, R, & Obdrzalek, D., Using Finite State Machines in Introductory Robotics:
Methods and Applications for Teaching and Learning, Robotics in Education, 2019.

[8] Hopcroft J. E., Ullman J. D., Introduction to automata theory, languages and
computation, Addison-Wesley, 1939.

[9] Allauzen C., Mohri M., Efficient algorithms for testing the twins property, Journal
of Automata, Languages, and Combinatorics, vol. 8, s. 117-144, 2003.

[10] Daniels, G., Mindstorms / SPIKE Prime / SPIKE Essential, GitHub repozitér,
dostupné on-line: https://github.com /gpdaniels/spike-prime (naposledy navstivené
19.05.2024)

41

42 LITERATURA

[11] Petrovi¢ P., Stavebnice LEGO Mindstorms Education EV3, materialy ku sko-
leniam, dostupné on-line: robotika.sk/events/18Skolenia/priruckaEV3.pdf (napo-
sledy navstivené 19.05.2024)

[12] Wallace, E., Finite State Machine Designer, 2010. dostupné on-line:
https://www.madebyevan.com/fsm/ (naposledy navstivené 19.05.2024)

[13] Pybricks, Robotics made easy, on-line aplikicia, dostupné on-line:
https:/ /pybricks.com/ (naposledy navstivené 19.05.2024)

[14] Pybricks, Robotics made easy, Github repozitar, dostupné on-line:
https://github.com /pybricks (naposledy navstivené 19.05.2024)

[15] Figma, Figma Design, on-line aplikacia, dostupné on-line:

https://www.figma.com/design (naposledy navstivené 05.06.2024)

[16] Chung C. J., Introduction to Lego Robotics with RCX Code Programming Lan-
guage. Introductory workbook for Robofest Competition Teams, 2006. dostupné

on-line: https://www.robofest.net /academy /rexcodedrobofest.pdf (naposledy nav-
Stivené 19.05.2024)

Priloha A: obsah elektronickej prilohy

V elektronickej prilohe prilozenej k praci sa nachddza zdrojovy kod programu i samotna
aplikacia pre tvorbu stavovych automatov a zdrojovy kod firmvéru. Tieto stibory st
taktiez zverejnené aj na stranke https://davinci.fmph.uniba.sk/“vikiszalyl/bc/

source.html. Je mozné ich najst v ¢asti: Zdrojové siubory tejto prdce.

43

https://davinci.fmph.uniba.sk/~vikiszaly1/bc/source.html
https://davinci.fmph.uniba.sk/~vikiszaly1/bc/source.html

	Úvod
	Východiská
	Stavebnice LEGO Education
	Nultá generácia
	Prvá generácia
	Druhá generácia
	Tretia generácia
	Štvrtá generácia

	Jazyky na programovanie robotov
	Konečné stavové automaty

	LEGO Spike Prime
	Programátorské prostredia

	Programovanie grafickej aplikácie v C#
	Serializácia v aplikáciách C#

	Špecifikácia a ciele práce
	Softvér na tvorbu automatov
	Nový firmvér
	Úprava webovej aplikácie

	Návrh
	Návrh modelu stavových automatov
	Návrh modelu jazyka pre akcie v automatoch
	Vzorové programy

	Návrh aplikácie
	Návrh firmvéru
	Návrh úprav webového prostredia

	Implementácia
	Čítanie dát zo senzorov
	Ovládanie motorov
	Bluetooth a komunikácia

	Výsledky
	Ukážky hotových programov
	Aplikácia na tvorbu automatov
	Webová stránka
	Firmvér

	Testovanie

	Záver
	Príloha A

