
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Programovanie robotov pomocou
stavových automatov

Bakalárska práca

2024
Tomáš Vikiszály

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Programovanie robotov pomocou
stavových automatov

Bakalárska práca

Študijný program: Aplikovaná informatika
Študijný odbor: Informatika
Školiace pracovisko: Katedra aplikovanej informatiky
Školiteľ: Mgr. Pavel Petrovič, PhD.

Bratislava, 2024
Tomáš Vikiszály

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Tomáš Vikiszály
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: slovenský
Sekundárny jazyk: anglický

Názov: Programovanie robotov pomocou stavových automatov
Programming Robots Using Finite State Machines

Anotácia: Robotické modely zo stavebnice Spike Prime sa programujú v troch rôznych
jazykoch: IconBlocks – určený najmä pre prvý stupeň ZŠ, WordBlocks –
určený najmä pre druhý stupneň ZŠ, Python – určený najmä pre pokročilých
používateľov. Problém je, že ani jeden nie je ideálny na modelovanie správania
robota: IconBlocks: neobsahuje ani podmienky, WordBlocks: obsahuje
podmienky, cykly, a (bohužiaľ iba globálne) udalosti, Python: texový jazyk
a preto neprehľadný a nevhodný na modelovanie správania. Najprirodzenejším
modelom správania je stavový automat (state machine), pretože robot počas
riešenia úlohy prechádza cez rozličné stavy/fázy – napr. stav1: je na čiare,
stav2: hľadá pokračovanie čiary po jej prerušení, stav3: prechádza cez tunel,
stav4: obchádza prekážku, ale aj jednotlivé stavy môžu o úroveň abstrakcie
nižšie obsahovať stavové automaty, napr. kým je na čiare, tak sa mení stav
medzi dvoma stavmi: hranavpravo: nachádza sa naľavo od hrany, hranavľavo:
nachádza sa napravo od hrany. Čiže každý stav môže byť vnútri znova stavový
automat a naopak, celkové správanie automatu možno považovať za jeden
makrostav v stavovom automate na vyššej úrovni abstrakcie. Na každom
stavovom prechode je určená udalosť, kedy k nemu dochádza, pričom virtuálne
udalosti môže automat generovať aj sám. V jednotlivých stavoch a na stavových
prechodoch možno štartovať aj tradične zapísaný procedurálny kód (task),
pričom tasky môžu interagovať, bežať aj v pozadí stavového automatu alebo
byť automaticky ukončené pri zmene stavu.

Cieľ: Úlohou študenta bude naprogramovať a na netriviálnych ukážkach otestovať
nový grafický programovací jazyk pre Spike Prime založený na stavových
automatoch.

Literatúra: R. A. Brooks, "A robot that walks; emergent behaviors from a carefully evolved
network," in Proceedings, 1989 International Conference on Robotics and
Automation, pp. 692-4+2 vol.2, 1989.
R. Balogh, D. Obdržálek, “Using Finite State Machines in Introductory
Robotics”, in: Robotics in Education. RiE 2018. Advances in Intelligent
Systems and Computing, vol 829. Springer, 2019.
R. Ghzouli et al. "Behavior Trees and State Machines in Robotics Applications,"
in IEEE Transactions on Software Engineering 49 (9), Sept. 2023.

Kľúčové
slová: konečný automat, programovanie robotov, robotika vo vzdelávaní

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Vedúci: Mgr. Pavel Petrovič, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 10.10.2023

Dátum schválenia: 16.10.2023 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

Čestné prehlásenie

Čestne vyhlasujem, že celú bakalársku prácu na tému „Programovanie robotov po-
mocou stavových automatov“, vrátane všetkých jej príloh a obrázkov, som vypracoval
samostatne, a to s použitím literatúry uvedenej v priloženom zozname.

Poďakovanie: Cítim obrovskú vďačnosť voči môjmu školiteľovi, ktorým bol Mgr.
Pavel Petrovič, PhD, za všetku pomoc, podporu a hodiny so mnou strávene v labora-
tóriu. Vďačný som aj svojej rodine za podporu a povzbudenia, ktoré som počas svojho
celého štúdia od nich dostával.

iv

Abstrakt

Táto bakalárska práca sa venuje návrhu a implementácii novej metódy programovania
robotických stavebníc Spike Prime od spoločnosti LEGO Education. Novou metódou
je používanie stavových automatov, ktoré jasne popisujú správanie robota v rôznych
situáciách a jeho reakcie na udalosti závislé od kontextu. Ich grafická reprezentácia je
prehľadná a samovysveľujúca, čo nie vždy platí o kóde zapísanom pomocou blokového
jazyka WordBlocks, kde môžu byť zadefinované iba udalosti s globálnou platnosťou,
alebo pomocou textového zdrojového kódu, kde správanie robota nie je vizualizované
vôbec. Návrh a implementácia systému je rozdelená do niekoľkých častí. Prvou čas-
ťou je grafická aplikácia, naprogramovaná v C#, v ktorej môže používateľ vytvárať
a meniť stavové automaty. Druhou je webové prostredie, ktoré slúži na komunikáciu
medzi počítačom a robotom a vzniklo modifikáciou prostredia pre systém PyBricks.
Používateľom vytvorené automaty sa do Prime Hub nahrávajú cez konzolu prostredia
po ich preložení do vnútornej reprezentácie. Treťou časťou bol nový firmware pre ria-
diacu jednotku Prime Hub, ktorý vznikol úpravou firmware k systému PyBricks, jeho
rozšírením o čítanie a vykonávanie stavových automatov. Túto funkcionalitu sme im-
plementovali a podrobili testovaniu, aby sme sa uistili, že implementácia nemá chyby.
Naprogramovali sme niekoľko stavových automatov ako ukážku, ako takéto programy
vyzerajú.

Kľúčové slová: Konečný automat, programovanie robotov, robotika vo vzdelávaní

v

Abstract

This bachelor’s thesis deals with the design and implementation of a new method of
programming Spike Prime robotic kits from LEGO Education. A new method is the use
of state machines that clearly describe the robot behavior in different situations and its
context-dependent reactions to events. Their graphical representation is clear and self-
explanatory, which is not always the case when source code is expressed using blocks,
where only global-events can be specified, or the source code is a plain text program
with no graphical visualisation at all. Design and implementation of the system consists
of several parts. The first part is a graphical application written in C# in which the
user can create and edit state machines. The second is the web environment, which
is used for communication between the computer and the robot. It was developed by
modifying the PyBricks web environment. State machines programmed by the user
are uploaded to Prime Hub through its console window after they are compiled to an
internal representation. The third part was the new firmware for Prime Hub control
unit. It was developed by modifying the PyBricks firmware so that it can read and
execute the state machines. We implemented and tested this functionality to ensure
that the implementation is without bugs. We programmed several state machines as a
demonstration of how such programs looks like.

Keywords: Finite state machines, robot programming, robotics in education

vi

Obsah

Úvod 1

1 Východiská 3
1.1 Stavebnice LEGO Education . 3

1.1.1 Nultá generácia . 3
1.1.2 Prvá generácia . 5
1.1.3 Druhá generácia . 5
1.1.4 Tretia generácia . 7
1.1.5 Štvrtá generácia . 8

1.2 Jazyky na programovanie robotov . 8
1.2.1 Konečné stavové automaty . 10

1.3 LEGO Spike Prime . 12
1.3.1 Programátorské prostredia . 14

1.4 Programovanie grafickej aplikácie v C# 16
1.4.1 Serializácia v aplikáciách C# 17

2 Špecifikácia a ciele práce 19
2.1 Softvér na tvorbu automatov . 19
2.2 Nový firmvér . 19
2.3 Úprava webovej aplikácie . 20

3 Návrh 21
3.1 Návrh modelu stavových automatov . 21
3.2 Návrh modelu jazyka pre akcie v automatoch 23

3.2.1 Vzorové programy . 23
3.3 Návrh aplikácie . 27
3.4 Návrh firmvéru . 28
3.5 Návrh úprav webového prostredia . 29

4 Implementácia 31
4.1 Čítanie dát zo senzorov . 31

vii

4.2 Ovládanie motorov . 31
4.3 Bluetooth a komunikácia . 32

5 Výsledky 33
5.1 Ukážky hotových programov . 33

5.1.1 Aplikácia na tvorbu automatov 33
5.1.2 Webová stránka . 35
5.1.3 Firmvér . 35

5.2 Testovanie . 36

Záver 39

Príloha A 43

viii

Zoznam obrázkov

1.1 Ukážka programu LEGO DACTA . 4
1.2 Ukážka programu LEGO RoboLab . 4
1.3 Ukážka dvoch programov v Robotics Invention System 5
1.4 Ukážka programu LEGO RoboLab . 6
1.5 Ukážka robota LEGO NXT-G . 6
1.6 Ukážka programu LEGO NXT-G . 7
1.7 Ukážka programu LEGO EV3 . 8
1.8 Ukážka modelu zo stavebnice LEGO EV3 8
1.9 Ukážka programu v jazyku Scratch . 9
1.10 Ukážka modelu zo stavebnice LEGO Spike Prime 9
1.11 Obrázok popisujúci subsuption architecture 12
1.12 Program pohybu robota, ktorý prenasleduje objekt pred sebou 13
1.13 Jednoduchý robot s ultrazvukovým senzorom 14
1.14 Stavový automat pre pohyb robota podľa vzdialenosti 14

3.1 Návrh grafickej reprezentácie stavového automatu 22
3.2 Návrh aplikácie pre tvorbu automatov 28

5.1 Ukážka automatu . 34
5.2 Ukážka netriviálneho automatu . 34
5.3 Webové prostredia počas behu automatu 35
5.4 Fotografia z testovania . 36
5.5 Fotografia z programu z testovania . 37
5.6 Fotografia z testovania programu . 38

ix

x

Zoznam kódov

1.1 Automatický generovaný kód po vytvorení novej aplikácie C# 17
1.2 Automatický generovaný kód pre grafické komponenty v C# 17
3.1 Ukážka modelu jazyka . 23
3.2 Program pre sledovanie objektu . 25
3.3 Program pre prácu s gyroskopom a LED svetelným displejom 26

xi

xii

Úvod

Spôsobov, ako programovať robotov je niekoľko. Pre robotické stavebnice Spike Prime
do spoločnosti LEGO Education sa sem radí programovací jazyk Python, vhodný pre
najskúsenejších používateľov, vizuálny programovací jazyk WordBlocks založený na
princípoch populárneho jazyka Scratch a ikonografický jazyk IconBlocks určený pre
najmladších používateľov. Hoci jazyky majú jednoduchú syntax a ľahko pochopiteľné
funkcie, problémom je, že ak sa používajú na programovanie viac alebo aj menej kom-
plexnejšieho správania robota, programová štruktúra nezodpovedá priamo správaniu
robota a preto takýto zápis správania robota nie je dostatočne priehľadný a zrozumi-
teľný a preto sa v ňom ťažšie hľadajú chyby. Navyše, ak sa programátor vráti k tomuto
programu po nejakom dlhšom čase, potrvá mu nejakú dobu, kým pochopí, čo program
robí.

Riešením tohto problému by bolo vytvoriť nový spôsob, ako programovať roboty. Pri
tom ale dodržať zásady, že tento spôsob bude jednoduchý a prehľadný. Jedným z dob-
rých spôsobov, ktorý by dodržal tieto zásady, by bolo použitie stavových automatov.
Stavové automaty sú jednoduché na pochopenie, sú prehľadné a ich grafická vizuali-
zácia je zároveň aj dokumentačným materiálom a predovšetkým, keďže sú vhodné na
modelovanie správania robota, našou hypotézou je, že budú vhodné aj na jeho progra-
movanie – a to by sme vďaka výsledkom tejto práce chceli umožniť otestovať.

Cieľom tejto bakalárskej práce je zanalyzovať možnosti, navrhnúť riešenie, imple-
mentovať ho a následne ho otestovať a takto ukázať, že stavové automaty sú vhodným
spôsobom ako programovať správanie robotov. Práca sa člení na niekoľko častí a to na:

1. Zbieranie a zosumarizovanie všetkých potrebných informácií, ktoré budeme po-
trebovať pre návrh riešenia. Patrí sem špecifikácia stavebnice, popis aktuálneho
firmvéru ako aj popis nástrojov, ktoré budeme pre implementáciu používať.

2. Návrh riešenia, ktorý vznikne na základe informácií, ktoré sme získali. Pri návrhu
udržať riešenie jednoduché a prehľadné ale efektívne a robustné, aby ho mohol
využívať ako žiak tak aj skúsený programátor.

3. Implementáciu návrhu vo všetkých častiach. Tvorbu aplikácie na kreslenie sta-
vových automatov, úpravu webového prostredia pre správnu komunikáciu medzi

1

2 Úvod

počítačom a robotom a samotný firmvér, ktorý bude naše stavové automaty ve-
dieť čítať a vykonávať.

4. Otestovanie aplikácie, aby naše riešenie neobsahovalo chyby a neželané správanie.

Kapitola 1

Východiská

V tejto kapitole sa budeme venovať teoretickej časti tejto bakalárskej práce. Budeme
v nej popisovať stavebnice LEGO Education, ich históriu a postupný vývoj, možnosti
programovania týchto stavebníc, výhody a problémy takéhoto programovania a progra-
mátorské prostredia. Popíšeme ďalšie možnosti, ako programovať tieto stavebnice, kde
spomenieme konečné stavové automaty, aktuálny firmvér a tvorbu grafickej aplikácie v
jazyku C#.

1.1 Stavebnice LEGO Education

Prvé robotické stavebnice od spoločnosti LEGO Education vznikli v osemdesiatych
rokoch minulého storočia a sú určené pre žiakov základných a stredných škôl. Hoci
hračkárska divízia na trhu umiestňovala stavebnice s bojovými robotmi a základnými
súčiastkami pre chlapcov, vzdelávacia divízia vždy vyrábala voči pohlaviu neutrálne
stavebnice. Jednoduché motorčeky na jednosmerný prúd boli postupne vybavené za-
budovanými otáčkovými senzormi, pribudli gyroskopy, ultrazvukové i farebné senzory,
rôzne verzie displejov, komunikácia cez BlueTooth a ďalšie komponenty. Školy ich vy-
užívali na vzdelávanie informatiky, robotiky a programovania pomocou hry, kreativity
a objavovania, k čomu LEGO Education pripravuje a neustále vylepšuje didaktické
materiály.

1.1.1 Nultá generácia

Prvou skutočne robotickou stavebnicou bola stavebnica LEGO Dacta Control Lab.
Táto generácia sa programovala na počítačoch v jazyku Logo pomocou softvéru Control
Lab. V tomto softvéri sa vytvoril kompletný program, ktorý mohol vizualizovať infor-
mácie na displeji počítača a bol spúšťaný priamo v počítači. Stavebnica neobsahovala
žiadne CPU, pamäť ani batériu, len hardvér pozostávajúci z jednosmerných motorče-
kov, žiaroviek a senzorov. Nevýhodou bolo to, že robot musel byť neustále pripojený

3

4 KAPITOLA 1. VÝCHODISKÁ

Obr. 1.1: Na obrázku je možné vidieť softvér Control Lab a stavebnicu LEGO Dacta
Control Lab. Zdroj obrázka je snímok obrazovky z videa [2].

Obr. 1.2: Ilustračný obrázok programu v LEGO RoboLab. Prevzaté z [3].

k počítaču, čo obmedzovalo rozsah pohybov robota, čo ale zároveň bolo výhodou, že
všetky dáta si mohol užívateľ nechať vykresľovať alebo vypisovať na obrazovku a ro-
bota riadiť interaktívne, spúšťať jednotlivé príkazy, jednoducho ladiť a testovať časti
svojho programu. Ukážky môže čitateľ nájsť na tejto stránke [1].

Alternatívou k softvéru LEGO Dacta bol vytvorený softvér založený na jazyku
LabView s názvom LEGO RoboLab. Na rozdiel od textového kódu v LEGO Dacta
tento softvér bol grafický postavený na takzvanom toku dát. Môžeme si to predstaviť
ako súbor nezávislých firiem, ktoré spracujú materiál okamžite po tom, čo k ním príde a
hneď ho posielajú ďalej, do ďalšej firmy. Tým je zabezpečená rýchlosť behu programu
a preto je tento jazyk veľmi populárny medzi fyzikmi programujúcimi senzory.

1.1. STAVEBNICE LEGO EDUCATION 5

Obr. 1.3: Ukážka dvoch programov v Robotics Invention System. Globálne udalosti
mohli reagovať na stavy senzorov alebo časovač. Vetvenie programu inšpirované ná-
strojmi CASE zo softvérového inžinierstva z minulého tisícročia - rovnaká myšlienka
ako neskôr využil jazyk Scratch. Prevzaté z [16].

1.1.2 Prvá generácia

Podstatná zmena nastala v roku 1998, keď spoločnosť LEGO vydala stavebnicu LEGO
MINDSTORMS Robotics Invention Kit so známou žltou kockou RCX, ktorá už bola pl-
nohodnotným počítačom programovateľným cez proprietárny IR port a teda umožnila
konštrukciu autonómnych mobilných robotov. Bolo k nej možné pripojiť tri výstupné
a tri vstupné zariadenia. Programovala sa v jazyku, ktorý by sme mohli považovať za
predchodcu jazyka Scratch, lebo jeho štruktúra bola veľmi podobná. Zaujímavou črtou
boli globálne udalosti - podmienky, ktoré sa počas behu programu neustále kontrolovali
a pri ich splnení sa odštartovala zodpovedajúca postupnosť kódu, príklad je zobrazený
na obr. 1.3.

1.1.3 Druhá generácia

Keďže spoločnosť LEGO Education zaznamenala so stavebnicou úspech, tak pokračo-
vali vo výskume a na trh priniesli novú generáciu stavebnice, čo popisuje aj jej názov,
LEGO MINDSTORMS Next Gereration, skrátene NXT-G. Rozdielov bolo niekoľko.
Niektoré boli malé a iné opäť veľké. Bezdrôtové pripojenie cez IR port nahradilo pri-
pojenie cez BlueTooth ale zároveň možnosť pripojiť robota cez USB kábel. Bohužiaľ,
rovnako ako s RCX, ani s NXT-G nemohli žiaci pracovať interaktívne zo svojho počí-
tača - zobrazovať si pomocné textové, alebo grafické výstupy, umiestňovať na plochu

6 KAPITOLA 1. VÝCHODISKÁ

Obr. 1.4: Ilustračný obrázok programu v LEGO RoboLab. Prevzaté z [3].

Obr. 1.5: Robot LEGO MINDSTORMS NXT-G. Prevzaté z [5].

tlačidlá alebo iné prvky, ktorými sa model riadil ako to bolo v systéme Control Lab.
Namiesto toho nastúpila paradigma Program - Download - Run, ktorej výsledkom je
náročnejšie ladenie robotov.

Na programovanie slúžil nový grafický softvér, ktorého jadro bolo postavené na
systéme LabView, alternatívou bolo programovanie v samotnom LabView pre pokro-
čilých. Tento softvér už nebol textový jazyk (aj keď zaobalený do dielikov puzzle),
ale plnohodnotne ikonografický jazyk. Program pozostával z prepojených ikon jednot-
livých príkazov a po rozkliknutí nejakého bloku sa otvorila paleta, kde si žiak mohol
navoliť parametre, s ktorými bude príkaz pracovať. Keď ale chcel používateľ zdieľať
svoj program v grafickej podobe, tak to bolo veľmi nepraktické, lebo by musel odfo-
tiť rozkliknutý každý blok samostatne, lebo bez parametrov by druhý užívateľ nemal
žiadaný výsledok.

Počas produkcie tejto generácie sa aj na Slovensku začal usporadúvať program First

1.1. STAVEBNICE LEGO EDUCATION 7

Obr. 1.6: Program pre LEGO MINDSTORMS NXT-G. Prevzaté z [3].

LEGO League, ktorý je pre deti vo veku od 4 až 16 rokov formou súťaže, ktorá má
u účastníkov podporovať kritické a tvorivé myslenie pri riešení reálnych problémov z
nášho sveta. FLL sa v USA začalo organizovať ešte v roku 1998, keď vyšla prvá verzia
LEGO MINDSTORMS RCX a zrejme je stále najväčšou robotickou súťažou na svete.

1.1.4 Tretia generácia

Tretia generácia nesie meno LEGO MINDSTORMS Evolution, alebo skrátene LEGO
EV3. Táto verzia robota dovoľovala takzvané datalogovanie informácii, programovanie
cez dátový kábel a Bluetooth, či za použitia iPad alebo Android zariadenia, notebookov,
či desktopov. Bola programovaná vo vynovenom grafickom systéme, ktorý používala
druhá generácia ale všetky informácie a nastavenia jednotlivých blokov programu boli
viditeľné bez ďalšieho klikania. Ukážka programu je na obrázku 1.7. Disponovala oveľa
väčším výpočtovým výkonom a jej počítač bežal na operačnom systéme Linux - čo
zároveň spôsobovalo dlhý štart a vypínanie. Podporovala aj externý USB modul pre
komunikáciu cez WiFi. Na obrázku 1.8 je ukážka robota zloženého z komponentov tejto
generácie.

Od roku 2003, kedy vznikol jazyk Scratch na MIT sa postupne rozšíril a získal si
priazeň používateľov i didaktikov informatiky. Je populárny pre svoju nenáročnosť a
jednoduchosť. Dokonca existoval doplnok na programovanie LEGO robotov cez klasický
Scratch. To viedlo aj spoločnosť LEGO Education, aby vydali novú verziu prostredia na
programovanie svojich robotov v jazyku, ktorý vychádzal zo syntaxe a vizuálnej podoby

8 KAPITOLA 1. VÝCHODISKÁ

Obr. 1.7: Program pre LEGO MINDSTORMS EV3. Prevzaté z [3].

Obr. 1.8: Ukážka modelu zo stavebnice LEGO MINDSTORMS EV3. Prevzaté z [4].

jazyka Scratch. Na popularite medzi žiakmi narástol aj jazyk Python, ktorý bol tiež
zakomponovaný medzi možnosti, ako programovať stavebnice LEGO Education. Na
obrázku 1.9 je ukážka programu v jazyku WordBlocks pre neskoršie stavebnice Spike
Prime, ale aj pre EV3 vydalo LEGO Education podobný softvér a programovací jazyk.

1.1.5 Štvrtá generácia

Táto generácia nesie meno LEGO Spike Prime. Líši sa tým, že nemá displej, porty sú
univerzálne, čiže už nie sú vyhradené iba pre motor alebo senzor, má 5x5 LED maticu
a bezchybný gyroskop v troch osiach. Na programovanie slúžia už len jazyky Scratch a
Python. Robot je programovateľný cez dátový kábel alebo použitím Bluetooth a nejakú
dobu disponoval aj modulom pre WiFi ako EV3, ktorý nakoniec tiež vypli. Vzorový
robot zložený z komponentov stavebnice je na obrázku 1.10.

1.2 Jazyky na programovanie robotov

Ako sme spomenuli v úvode, pre poslednú generáciu robotických stavebníc LEGO Edu-
cation Spike Prime LEGO Education ponúka tri jazyky – Icon Blocks - bez textov, pre
žiakov 1. stupňa, Word Blocks – podobný jazyku Scratch a Python – plne textový

1.2. JAZYKY NA PROGRAMOVANIE ROBOTOV 9

Obr. 1.9: Ukážka programu v jazyku Scratch. Program som vytvoril v systéme LEGO
Education Spike.

Obr. 1.10: Ukážka modelu zo stavebnice LEGO Spike Prime. Prevzaté z [4].

10 KAPITOLA 1. VÝCHODISKÁ

programovací jazyk. Interpretované jazyky, ako napr. jazyk Python, sú vhodné pre
začiatočníkov ako úvod do programovania, ale nie sú vhodné pre nízkoúrovňové prog-
ramovanie robotov, kde nám záleží na každej milisekunde. Každá zbytočná operácia,
ktorú musí riadiaca jednotka urobiť navyše, nás len vzďaľuje od toho, čo sme v prog-
rame napísali. Python je veľmi dynamický, alokuje a dealokuje si pamäť kedykoľvek to
on uzná za vhodné a vtedy je v rýchlosti nekonzistentný. Prvýkrát mu nejaká operácia
trvá určitý počet milisekúnd a keď tú istú operáciu zavoláme o chvíľu neskôr, tak to
môže trvať aj niekoľko násobne dlhšie, lebo práve v tej chvíli spustil vnútorný garbage
collector. Ďalšou nevýhodou je, že programátor musí ovládať celý rad príkazov z kniž-
nice, ktorá mu sprístupňuje ovládanie hardvéru. Jazyk Scratch môže byť nepraktický
pre programovanie zložitejších robotických úloh a podobne ho obmedzuje rýchlosť ako
Python, keďže jeho kód sa tiež kompiluje do MicroPythonu. Pri programovaní robotov
je potrebné naprogramovať rozhodovanie pre rôzne situácie, v ktorých sa bude robot
nachádzať. To pri lineárnom zápise programového toku alebo pri využití globálnych
udalostí - oboje sú typické charakteristiky scratchového jazyka Word Blocks, môže byť
zápis neprehľadný, komplikovaný, chybný a ťažko zrozumiteľný.

1.2.1 Konečné stavové automaty

Koncept stavových automatov sa postupne vyvinul od uvedenia Turingových strojov v
roku 1936 Alanom Turingom. Konečné stavové automaty (finite-state automaton, často
označovaný aj ako finite-state machine) podrobne analyzovali J. D. Ullman a J. E.
Hopcroft v knihe Úvod do teórie automatov, jazykov a výpočtov [8]. Konečný automat
(KA) pozostáva z konečnej množiny stavov a množiny prechodov zo stavu do stavu,
ktoré sa uskutočňujú, ak je na vstupe skonzumovaný symbol zo vstupnej abecedy. Pre
každý vstupný symbol existuje najviac jeden prechod z každého stavu (možno aj späť
do toho istého stavu). Jeden stav, zvyčajne označený g0, je počiatočný stav, v ktorom
automat začína. Niektoré stavy sú označené ako koncové alebo akceptačné stavy. KA
sa dá vizualizovať súvislým orientovaným grafom, nazývaným prechodový diagram,
nasledovne. Vrcholy grafu zodpovedajú stavom KA. Ak existuje prechod zo stavu q

do stavu p na vstupe a, potom v prechodovom diagrame existuje orientovaná hrana
označená a spájajúca stav q so stavom p. KA akceptuje reťazec x, ak sled prechodov
zodpovedajúcich symbolom x vedie z počiatočného stavu do akceptačného stavu.

Ak ale chceme, aby robot okrem pozorovania svojho prostredia a reagovania zme-
nou svojho stavu vykonával aj nejakú aktivitu, potrebujeme miesto, kam to zapísať.
Tomuto popisu vyhovuje konečný stavový prevodník (finite-state transducer). Tento
automat má nielen vstupnú pásku, ale aj výstupnú. Symboly zapisované na výstupnú
pásku môžeme interpretovať ako akcie, ktoré má robot vykonávať. Stručná definícia sa
nachádza napr. v článku [9]. Konečný stavový prevodník T = (Σ,∆, Q, I, F, E, λ, ρ) je

1.2. JAZYKY NA PROGRAMOVANIE ROBOTOV 11

8-tica, kde:

• Σ je konečná vstupná abeceda prevodníka,

• ∆ je konečná výstupná abeceda,

• Q je konečná množina stavov,

• I ⊆ Q je množina počiatočných stavov,

• F ⊆ Q je množina koncových stavov,

• E ⊆ Q× (Σ ∪ {ϵ})× (∆ ∪ {ϵ})×Q je konečná množina prechodov,

• λ : I → ∆∗ je počiatočná výstupná funkcia, ktorá zobrazuje I na ∆∗, a

• ρ : F → ∆∗ je koncová výstupná funkcia, ktorá zobrazuje F na ∆∗.

Stavový prechod e ∈ E, označujeme i[e] jeho vstupný symbol, p[e] jeho východis-
kový alebo predchádzajúci stav a n[e] jeho cieľový alebo nasledujúci stav, w[e] jeho
váhu (v prípade vážených automatov), o[e] jeho výstupný symbol (v prípade prekla-
dačov). Pre stav q ∈ Q, označujeme E[q] množinu prechodov odchádzajúcich z q. V
celej tejto práci budeme mať často na mysli konečné stavové prevodníky, keď budeme
písať o stavových automatoch - čo je oveľa viac používaný a preto lepšie zrozumiteľný
pojem. Prevodníky môžeme totiž stále chápať iba ako určitým spôsobom obohatené
automaty. Obohatenie, ktoré využijeme bude spočívať nielen v pridaní akcie do sta-
vového prechodu, ale aj vo vytváraní lokálnej pamäte, pod-automatov a nahradenie
jednej akcie celou postupnosťou akcií. Práca sa nezameriava na formálne odvodzovanie
a dokazovanie, kde by tieto rozdiely boli podstatné, ale využíva najmä základnú povahu
štruktúry týchto formalizmov, ktorá je rovnaká.

Takýto stavový automat vhodne popisuje správanie programovaných robotov. Túto
myšlienkou využil aj Rodney Brooks, ktorý sa považuje za otca Behaviour-Based ro-
botiky, ktorej princípy sa používajú už vyše dvadsať rokov. Využil ho aj vo svojom
systéme programovania s názvom Subsumption Architecture, kedy staviame správanie
robota do vrstiev a až keď máme správne uchopené nižšie správanie, programujeme
správanie na vyššej vrstve, ktoré interaguje s prvkami na nižších vrstvách. Pre príklad
uvediem prípad, kedy chceme robota naučiť behať cez prekážky. V prvom kroku ho na-
učíme stáť (udržiavať rovnováhu), v ďalšom kráčať a skákať, kde môžeme interagovať so
správaním na udržiavanie rovnováhy, ktoré sme naprogramovali skôr. Ďalej ho naučíme
behať, kde opäť môžeme interagovať s kráčaním a napokon môžeme programovať beh
cez prekážky, ktoré bude interagovať s viacerými správaniami.

Dôvody, prečo používať konečné stavové automaty pre programovanie robotov,
dobre zhrnuli autori v publikácii [7], kde píšu, že stavové automaty sú jednoducho

12 KAPITOLA 1. VÝCHODISKÁ

Obr. 1.11: SubSumption Architecture z knihy [6]

pochopiteľné, často používané medzi programátormi ako komunikácia a často už samé
o sebe tvoria dokumentáciu. Je jednoduché sledovať, v ktorom stave sa daný robot
nachádza a ľahko sa tak hľadajú chyby v programe.

1.3 LEGO Spike Prime

Ako sme si už popísali túto stavebnicu v časti 1.1.5, tohto robota je možné programovať
pomocou rôznych jazykov. Hardvér riadiacej kocky pozostáva z procesora STM32F413
s 320KB pamäte RAM a 1MB pamäte flash, 32MB interného úložiska, šiestich por-
tov pre vstupno-výstupné zariadenia, z čoho sú dva vysokorýchlostné a štyri obyčajné,
maticovým LED displejom 5x5, konektorom pre micro-USB kábel, ktorý okrem prog-
ramovania slúži aj na inštaláciu firmvérov a nabíjanie batérie (podstatné vylepšenie
oproti EV3), Bluetooth Clasic a Bluetooth Low Energy, gyroskopom a akcelerometrom
pre tri osi a zvukovým výstupom. Informácie prehľadne spísal Geoffrey Daniels na svo-
jom GitHub repozitári [10]. Okrem vstavaného hardvéru stavebnica obsahuje motory
na jednosmerný prúd so zabudovanými otáčkovými senzormi, ultrazvukový senzor na
meranie vzdialenosti, senzor na meranie sily (a dotyku) a farebný/svetelný senzor.

Na ilustráciu práce s touto stavebnicou použijeme úlohu, kde robot má prenasle-
dovať objekt, ktorý je pred ním. Keď sa objekt priblíži príliš blízko, tak robot začne
cúvať a naopak, keď je objekt vzdialený, priblíži sa k nemu. Pre túto úlohu si zostrojíme
robota s ultrazvukom, aký je vyobrazený na obrázku 1.13. Je to zjednodušená verzia
príkladu z príručky [11], úloha 16. My ale použijeme iba jeden senzor. Obrázok 1.12 je
fotografia funkčného programu a tu je jeho vysvetlenie:

• 1. začiatok programu, ktorý sa spustí hneď po prijatí programu do riadiacej
jednotky alebo po opätovnom stlačení ovládacieho tlačidla

1.3. LEGO SPIKE PRIME 13

Obr. 1.12: Program, ktorého vykonávaním robot prenasleduje objekt, ktorý je pred
ním.

• 2. nastavenie rýchlosti robota na 25% maximálnej rýchlosti

• 3. nekonečný cyklus programu

• 4. podmienka, v ktorej sa pýtame, či objekt pred nami je bližšie ako 10 centimet-
rov. Ak je táto podmienka splnená, tak:

– 4.1 a 4.2 zapnutie motoru E v smere hodinových ručičiek a motoru F v
opačnom smere

• 5. podmienka, v ktorej sa pýtame, či objekt pred nami je od nás ďalej ako 20
centimetrov. Ak je táto podmienka splnená, tak:

– 5.1 a 5.2 zapnutie motorov E a F v opačnom smere ako v bodoch 4.1 a 4.2

• 6. podmienka, v ktorej sa pýtame, či objekt pred nami je ďalej ako 12 centimetrov
a zároveň bližšie ako 18 centimetrov. Ak je táto podmienka splnená, tak:

– 6.1 vypneme oba motory

Správanie robota s takýmto programom môžeme modelovať pomocou stavového
automatu ako na obr. 1.14. Automat pozostáva z troch stavov: Wait, GoBack a Follow,

14 KAPITOLA 1. VÝCHODISKÁ

Obr. 1.13: Robot s ultrazvukovým senzorom. Obrázok bol vytvorený pomocou stud.io
aplikácie.

Obr. 1.14: Robot pohybujúci sa závisle od vzdialenosti od objektu podľa stavového
automatu vytvoreného na [12].

medzi ktorými prechádza závisle od toho, v akej vzdialenosti je od objektu. Ak si pod
prechodmi predstavíme aj akcie - príkazy na ovládanie pohybu motorov, dostali by sme
konečno-stavový prekladač, ktorý by mohol takýto program nahradiť.

1.3.1 Programátorské prostredia

Pre programovanie týchto stavebníc existuje softvér priamo od LEGO Education, ktorý
je v online podobe aj ako aplikácia. Okrem tohto softvéru vieme používať aj softvér s
názvom Pybricks [13], ktorý má tiež online aj offline verziu. Ponúka programovanie v
jazyku Python a spoplatnenú verziu blokového jazyka v štýle jazyka Scratch, inštaláciu
svojho firmvéru - odlišného od štandardného firmvéru LEGO a ukážky častí kódov,
ktoré pracujú s knižnicou na obsluhu hardvéru v jazyku Python.

Pybricks a firmvér

Celý softvér Pybricks má verejný zdrojový kód na GitHub-e [14]. V repozitári pybricks-
code sú zdrojové súbory aplikácie, ktorá je písaná v jazyku TypeScript nad framework-

1.3. LEGO SPIKE PRIME 15

om React. pybricksdev je základné nastavenie pre pokročilejších programátorov, ktorý
chcú programovať v prostredí Visual Studio Code. Samotný firmvér je v repozitári
pybricks-micropython. Tento repozitár má v stromovej štruktúre niekoľko pre nás zau-
jímavých častí. Prvá časť je priečinok bricks, ktorý obsahuje pravidlá, podľa ktorých
sa vytvorí firmvér a v ktorých potom aj tento firmvér nájdeme (/bricks/primehub/buil-
d/firmware.zip). Druhou dôležitou časťou tohto repozitára je priečinok /lib/pbio/sys/,
v ktorom sú príkazy na ovládanie hardvéru. V main.c sa nachádza hlavná funkcia, v
ktorej robot čaká na vypnutie alebo spustiteľný kód, ktorý následne vykoná. Ďalšou
potrebnou časťou je súbor /bricks/_common/source.mk, v ktorom sú vypísané všetky
súbory, ktoré sa pri vytváraní firmvéru použijú.

Pybricks aplikácia je rozdelená na dve časti. V ľavej časti máme dve ikony, list a
ozubené koleso, a navigáciu. Ozubené koleso symbolizuje nastavenia. Tu si vieme meniť
farbu pozadia editora, inštalovať firmvér, nájdeme tu veľa užitočných odkazov, naprí-
klad na úvod do tohto systému, vzorových projektov alebo miesto, kde vieme hlásiť
akékoľvek problémy s týmto softvérom. Druhá možnosť, ktorú predstavuje prázdny
list, slúži na správu našich programov. Jednotlivé programy vieme nahrávať, sťahovať
a vytvárať nové. Pri vytváraní sa nás aplikácia opýta na jazyk, v ktorom budeme nášho
robota programovať a názov programu. V pravej časti hore nájdeme štyri tlačidlá. Pr-
vým sa pripájame na našu riadiacu jednotku pomocou Bluetooth, druhým spúšťame
program, tretím ho vieme vypnúť a štvrtým spustíme konzolu, v ktorej vieme posielať
robotovi príkazy postupne.

Pri tvorbe firmvéru je potrebný prekladač pre 32-bitový ARM (cross-compiller),
keďže jeho kód je napísaný v jazyku C. Pre vytvorenie firmvéru pre stavebnicu LEGO
Spike Prime potrebujeme byť v najvyššom priečinku repozitára a v operačnom systéme
Linux zavolať príkaz make primehub. Na úspešnú inštaláciu potrebujeme mať aktuali-
zované ovládače, na čo nás upozorní aj aplikácia pri neúspešnej inštalácii. Po úspešnom
vytvorení firmvéru v aplikácii urobíme nasledujúci zoznam úkonov v danom poradí:

1. v ľavej časti hlavného menu otvoríme ozubené koleso, čo predstavuje nastavenia

2. v navigácii v časti Firmware zvolíme možnosť Install Pybricks Firmware

3. vyskakovacie okno v dolnej časti v strede má možnosť Advanced, klikneme na ňu

4. do zobrazeného rámčeka presunieme náš vytvorený firmvér alebo ak klikneme
doň, tak nám to otvorí prieskumníka, v ktorom si náš firmvér vyhľadáme

5. po vložení firmvéru by ho aplikácia mala rozoznať, čo sa prejaví tým, že nám v
hornej časti už neukazuje možnosti jednotlivých stavebníc

6. potvrdíme tlačidlom Next

16 KAPITOLA 1. VÝCHODISKÁ

7. odsúhlasíme licenciu v zaškrtávacom boxe a klikneme na Next

8. pomenujeme si našu riadiacu jednotku, ktorej názov sa nám bude zobrazovať pri
pripájaní na ňu a potvrdíme tlačidlom Next

9. postupujeme podľa návodu:

(a) odpojíme riadiacu jednotku a vypneme ju

(b) za stáleho držania tlačidla Bluetooth pripojíme kocku dátovým káblom k
počítaču

(c) tlačidlo Bluetooth pustíme potom, čo začne blikať na rúžovo-zeleno-modrú
farbu

10. klikneme na tlačidlo Install

11. aplikácia nám ponúkne nové vyskakovacie okno, v ktorom zvolíme našu riadiacu
jednotku a potvrdíme tlačidlom Connect

12. úspešná inštalácia je signalizovaná rozsvietením LED matice na riadiacej jednotke
alebo zmiznutím ukazovateľa priebehu inštalácie v aplikácii.

1.4 Programovanie grafickej aplikácie v C#

Programovanie aplikácií v jazyku C# je jednoduché a efektívne vďaka používaniu soft-
vérov na to určených. Jazyk je objektovo orientovaný a o správu pamäte sa nemusíme
starať, keďže ju spravuje mechanizmus garbage collector. Vývojové prostredia ponú-
kajú množstvo rôznych predprogramovaných komponentov, užitočných a efektívnych
knižníc a okolo týchto aplikácií je široká komunita a podrobná dokumentácia. Aplikácie
väčšinou využívajú framework .NET. Pri vytváraní novej aplikácie vytvoríme nový pro-
jekt, zvolíme možnosť Windows Forms App s .NET Framework v záložke Deskop. Po
potvrdení tlačidlom Create nám softvér vytvorí prázdnu aplikáciu, ktorá po spustení
otvorí našu novovytvorenú aplikáciu. Spustiť ju vieme z editora a poslednú spustenú
z editora vieme spustiť v priečinku, kde je náš projekt /nazovProjektu/nazovProjektu-
/bin/Debug/nazovProjektu.exe. Automaticky vygenerovaný kód novej aplikácie môže
vyzerať ako v ukážke 1.1. Príkaz Using znamená to isté, ako v iných jazykoch Include.
namespace je totožný s príkazom, ktorý sa používa v jazyku C++, čiže namiesto vola-
nia WindowsFormsApp1.Form1() nám postačí Form1(). Funkcia public Form1()... je
konštruktor našej triedy, ktorý inicializuje všetky grafické komponenty. Neodporúča sa
do tejto funkcie čokoľvek písať, lebo ak to interaguje s nejakým grafickým komponen-
tom, ktorý ešte nebol inicializovaný, tak to môže spôsobiť spadnutie našej aplikácie.
Ak máme nejaký kód, ktorý chceme spustiť hneď po otvorení aplikácie, je potrebné na

1.4. PROGRAMOVANIE GRAFICKEJ APLIKÁCIE V C# 17

Algoritmus 1.1: Automatický generovaný kód po vytvorení novej aplikácie C#

us ing System ;
us ing System . Windows . Forms ;

namespace WindowsFormsApp1
{

pub l i c p a r t i a l c l a s s Form1 : Form
{

pub l i c Form1 ()
{

In i t i a l i z eComponent () ;
}

}
}

Algoritmus 1.2: Automatický generovaný kód pre grafické komponenty v C#

pr i va t e void button1_Click (ob j e c t sender , EventArgs e)
{

throw new System . NotImplementedException () ;
}

to použiť funkciu public Form1_Load()..., ktorá slúži presne pre tieto účely. Vytvoriť
ju je potrebné cez záložku Design v spodnej časti softvéru.

V softvéri vieme všetko grafické ručne programovať, alebo si v záložke zvolíme na-
miesto Code záložku Design, čo nám otvorí celú grafickú paletu nástrojov. Komponenty
vieme pridávať do našej aplikácie, odoberať, škálovať, meniť rôzne atribúty a po dvoj-
kliku na tieto komponenty, ak sú interaktívne, sa nám vygeneruje kód 1.2, v ktorom
vieme programovať správanie. Ak chceme takýto kód neskôr odstrániť, je nutné to robiť
opäť cez Design, alebo túto funkciu nájsť v súbore Form1.Designer.cs a vymazať ju i
odtiaľto.

1.4.1 Serializácia v aplikáciách C#

Serializácia je ukladanie objektov v pamäti do formátu, ktorý sa dá prenášať medzi
počítačmi, alebo uložiť do vonkajšej pamäte počítača a neskôr pri čítaní opäť vytvo-
riť pôvodne objekty. Na serializáciu v C# možno využiť buď štandardné .NET API
(napr. XmlSerializer/BinaryFormatter), alebo je možné použiť iné knižnice, ktoré sa
dajú veľmi ľahko a rýchlo nainštalovať. Binárna serializácia je nebezpečná a spôsobuje

18 KAPITOLA 1. VÝCHODISKÁ

problémy pri aktualizácii softvéru na novú verziu. Vhodná knižnica pre naše potreby
je Newtonsoft.Json, ktorú nainštalujeme v časti Tools > NuGet Package Manager >
Manage NuGet Packages for Solution, kde túto knižnicu vyhľadáme a nainštalujeme.
Potom stačí pridať string jsonString = JsonConvert.SerializeObject(Object, settings);,
kde jsonString je textový reťazec vo formáte JSON. Ten následne môžeme zapísať do
súboru. Knižnica serializuje všetko, čo je v triede Object prístupne metódami get; set;
a pri tom používa nastavenia, ktoré sú v argumente settings. Vieme tam nastaviť počet
medzier, ignorovanie rekurzívnych závislosti a mnoho ďalších parametrov. Pri ignoro-
vaní závislosti si treba dať pozor, lebo knižnica si neurobí nejakú tabuľku podľa ktorej
tieto závislosti pri deserializácii naspäť nastaví, ale všetky tieto parametre serializuje
ako null.

Kapitola 2

Špecifikácia a ciele práce

V tejto kapitole nájdeme cieľ bakalárskej práce, špecifikáciu funkcionality a dôvody
prečo sme zvolili práve takéto riešenie.

Tak ako sme uviedli v časti 1.2.1, stavové automaty, presnejšie konečné stavové
prekladače sú vhodný, prehľadný a dokumentujúci spôsob ako správne popísať sprá-
vanie robota v rozličnej situácii. Cieľom práce bude umožniť užívateľom programovať
robotov takýmto spôsobom. Úloh bude v tejto práci niekoľko a to nasledovných:

• tvorba aplikácie pre vytváranie konečných stavových prevodníkov

• písanie firmvéru na čítanie a vykonávanie takýchto automatov

• úprava aktuálnej webovej aplikácie od Pybricks pre posielanie nami vytvorených
automatov

.

2.1 Softvér na tvorbu automatov

Takýto softvér by mal užívateľovi dovoľovať tvorbu a editáciu paralelných a vnorených
automatov, vytváranie stavov, ich editovanie a mazanie, medzi stavmi tvoriť prechody,
ktoré budú obsahovať podmienky, za ktorých sa stav robota zmení a zoznam akcií,
ktoré pri tejto zmene má robot vykonať a vytváranie dátových štruktúr pre lokálnu
pamäť na ovládanie v rámci jedného automatu a globálnu pamäť, ktorá bude slúžiť na
komunikáciu medzi automatmi. V softvéri by mala byť možnosť uloženia, načítania a
tvorby exportu nami vytvoreného automatu.

2.2 Nový firmvér

Robot bude vedieť efektívne vykonávať naprogramované konečné stavové prevodníky.
Prevodníky bude možné do robota prijať v predspracovanej podobe, ktorá sa vyexpor-

19

20 KAPITOLA 2. ŠPECIFIKÁCIA A CIELE PRÁCE

tuje z aplikácie na tvorbu automatov.

2.3 Úprava webovej aplikácie

Webová aplikácia Pybricks slúži ako komunikačný kanál medzi riadiacou jednotkou a
počítačom. Upravená verzia bude umožňovať posielať robotovi exportované vytvorené
stavové automaty za účelom ich následného vykonávania modifikovaným firmware. Zá-
roveň bude umožňovať vypisovať správy z bežiaceho automatu do svojej konzoly.

Kapitola 3

Návrh

V nasledujúcej kapitole sa budeme zaoberať návrhom modelu jazyka, návrhom apli-
kácie pre tvorbu stavových automatov, modifikáciou webového rozhrania a rozšírením
súčasného firmvéru pre vykonávanie stavových automatov. Niektoré z týchto návrhov
vizualizujeme obrázkom pre lepšie vysvetlenie danej funkcionality alebo na zobrazenie
vzťahu medzi jednotlivými časťami.

3.1 Návrh modelu stavových automatov

Stavový automat, ktorý bude môcť užívateľ vytvoriť, bude o čosi zložitejší od konečno-
stavových prevodníkov, ktoré sme spomínali v časti 1.2.1, ale o to viac môžu obohatiť
stavovo definované správanie robotov. Ukážku návrhu je možné vidieť na obrázku 3.1.
Samotné správanie bude možné rozdeliť do automatov (paralelných automatov), ktoré
sa po spustení začnú vykonávať súbežne. Každý automat bude obsahovať práve je-
den inicializačný stav, neprázdnu množinu konečných stavov a ďalšiu množinu stavov
rôzneho typu. Tieto typy sú:

1. prázdny stav, ktorý je základný a po tom, čo sem program vstúpi, tak sa nič
navyše nedeje

2. aktívny stav, ktorý bude obsahovať zoznam príkazov, ktoré sa budú v určitom
časovom intervale dookola vykonávať pokiaľ program tento stav neopustí

3. stav s vnoreným automatom, do ktorého keď program príde, tak sa spustí vyko-
návanie vnoreného automatu, ktoré sa ukončí vtedy, keď vnorený automat vojde
do jedného z konečných stavov. Tu bude mať užívateľ možnosť nastaviť takzvaný
Exit code, ktorý bude môcť použiť v podmienkach prechodových funkcií.

Medzi jednotlivými stavmi bude možné vytvárať prechody, ktoré budú obsaho-
vať podmienky, za ktorých prechod z jedného stavu do druhého nastane a zoznam

21

22 KAPITOLA 3. NÁVRH

Obr. 3.1: Návrh grafického zobrazenia automatu za použitia nástroja Figma [15].

akcií, ktoré sa pri danej zmene majú vykonať. Žiaden prechod nemôže smerovať do
inicializačného stavu a žiaden prechod nemôže smerovať z konečných stavov do iného
stavu. Medzi každými dvoma stavmi môže existovať nanajvýš jeden stavový prechod.
Je možné zadať inicializačný skript (funkciu), ktorá sa vykoná predtým, ako automat
prejde do svojho počiatočného stavu, čiže zoznam inštrukcií, ktoré sa majú vykonať
pred spustením daného automatu. Konečné stavy môžu mať dva výnimočné prechody:

1. Super prechod, ktorého podmienka sa kontroluje neustále počas vykonávania ak-
tuálneho automatu (čiže ak je splnená hneď po vstupe do tohto automatu, tak
vykonávanie sa hneď ukončí, keďže program prejde do konečného stavu) a obsa-
hovať môže zoznam inštrukcií na vykonanie

2. a konečný prechod, ktorý obsahuje zoznam inštrukcií a zároveň slúži na záverečné
uloženie dát do globálnej pamäte alebo nastavenie Exit code pred odchodom z
daného automatu.

Automaty budú obsahovať lokálne a globálne premenné, ktoré budú čísla, znakové
reťazce a boolovské hodnoty. Lokálna premenná bude dostupná pre daný automat,
ktorému bola priradená, zatiaľ čo globálna bude viditeľná všetkým paralelným aj vno-
reným automatom. Medzi premenné patria i inštancie alebo odkazy na nainicializované
zariadenia (motory a senzory).

3.2. NÁVRH MODELU JAZYKA PRE AKCIE V AUTOMATOCH 23

Algoritmus 3.1: Ukážka modelu jazyka

de f i n e (x , int , 2)
d e f i n e (y , int , 5)
d e f i n e (z , int 0)
sum(z , x , y)
pr int_value ("z=" , z)

3.2 Návrh modelu jazyka pre akcie v automatoch

Syntax príkazov, ktoré budú reprezentovať akcie vykonávané na stavových prechodoch,
alebo skripty vnútri aktívneho stavu vychádza zo syntaxe jazyka Python, čo bude zjed-
nodušením pre veľkú časť užívateľov. Operáciu sa zapisujú pomocou názvu funkcie a
vstupných argumentov v zátvorkách oddelených čiarkami, pozri ukážku 3.1. Prvé tri
riadky deklarujú a definujú nové premenné x, y a z, ktoré sú typu Integer s rôznou
iniciálnou hodnotou. Následne skript vykoná súčet, ktorého výsledok sa uloží do pre-
mennej z a sčítance sú x a y. V poslednom kroku programu sa volá funkcia pre výpis
hodnoty do konzoly, ktorá má dva argumenty. Prvým je textový reťazec a druhým
je samotná hodnota, ktorú chceme vypísať. Takýmto spôsobom bude užívateľ vedieť
volať funkcie, ktoré sa starajú o obsluhu motorov, senzorov a ďalších zariadení. Jazyk
umožňuje:

1. definovať premenné typu Integer, String a Boolean, operácie s nimi ako napríklad
priradenie, sčítanie, odčítanie, nové definovanie

2. jednoduché logické operácie ako sú logické And, logické Or, logické Not

3. ovládanie a volanie funkcií nad hardvérom

4. jednoduché cykly For a While

5. komunikáciu s počítačom pomocou Bluetooth pre výpisy do konzoly.

.

3.2.1 Vzorové programy

Na demonštrovanie vyjadrovacej sily a jednoduchosti takého jazyka využijeme nasledu-
júce ukážky. Každú ukážku si prejdeme krok po kroku a vysvetlíme si, čo daný program
robí, na čo slúži.

24 KAPITOLA 3. NÁVRH

Sledovanie objektu K tejto časti patrí program v ukážke 3.2. Na začiatku je defi-
nícia a deklarácia piatich premenných:

1. distance bude slúžiť na uchovávanie si vzdialenosti, ktorú budeme získavať z ul-
trazvukového senzora

2. condition bude slúžiť na uchovávanie si logického výsledku porovnania

3. follow je premenná, ktorú využijeme na opakovanie cyklu While

4. sensor je premenná alebo odkaz na inštanciu senzora, ktorý bude pripojený na
porte A

5. base, je tiež premenná alebo odkaz na inštanciu dvoch synchronizovaných moto-
rov, kde ľavý motor je na porte B a pravý motor je na porte C

Na ďalšom riadku začína cyklus While, ktorý je nekonečný, keďže premenná follow sa
nikde nemení. Vo vnútri cyklu je funkcia, ktorá do premennej distance uloží hodnotu
vzdialenosti zo senzora sensor. Následne sú tri porovnávania, kde sa výsledok uloží
do premennej condition. Porovnáva sa hodnota premennej distance s konštantami 400,
100, 150 a 350. Ak sa splní jedna z prvých dvoch podmienok, tak sa zavolá funkcia,
ktorá ovláda motory a pohyb spustí s rýchlosťou 200 milimetrov za sekúndu a uhlom
0 stupňov za sekundu. Ak je splnená tretia podmienka, tak sa motory zastavia.

Gyroskop a LED matica Táto časť opisuje program v ukážke 3.3. Na začiatku je
definícia a deklarácia šiestich premenných:

1. x a y použijeme na uchovanie si informácie o polohe bodu v ypsilonovej a xovej
osi

2. x_rotation a y_rotation budeme využívať na uchovanie si informácie o naklonení
riadiacej jednotky v daných osiach

3. condition_x a condition_y využijeme pre uchovanie si logických kontrol, či sa
riadiaca jednotka dostatočne veľa naklonila v danej osi

V ďalšom riadku je nekonečný cyklus While. Vo vnútri cyklu sa na začiatku získava
veľkosť náklonu v osiach x a y, ktoré sa priradia do premenných. Potom sa kontrolujú
všetky možnosti, ktoré môžu nastať. Kocka je naklonená hore, dole, vpravo, vľavo alebo
nie je naklonená, a podľa toho sa rozsvieti bod v maticovej mriežke so stopercentnou
silou podsvietenia.

3.2. NÁVRH MODELU JAZYKA PRE AKCIE V AUTOMATOCH 25

Algoritmus 3.2: Program pre sledovanie objektu

de f i n e (d i s tance , int , 0)
d e f i n e (cond i t ion , bool , f a l s e)
d e f i n e (fo l l ow , bool , t rue)
d e f i n e (sensor , Sensor , A)
d e f i n e (base , DriveBase , B+C)
while (f o l l ow)
{

get_low_distance (d i s tance , s en so r)
more (cond i t ion , d i s tance , 400)
i f (cond i t i on)
{

base_run_forever (base , 200 , 0)
}
l e s s (cond i t ion , d i s tance , 100)
i f (cond i t i on)
{

base_run_forever (base , −200, 0)
}
between (cond i t ion , d i s tance , 150 , 350)
i f (cond i t i on)
{

base_stop (base)
}

}

26 KAPITOLA 3. NÁVRH

Algoritmus 3.3: Program pre prácu s gyroskopom a LED svetelným displejom

de f i n e (x , int , 2)
d e f i n e (y , int , 2)
d e f i n e (x_rotation , int , 0)
d e f i n e (y_rotation , int , 0)
d e f i n e (condition_x , bool , f a l s e)
d e f i n e (condition_y , bool , f a l s e)
while (t rue)
{

matr ix_clear ()
get_x_rotation (x_rotat ion)
get_y_rotation (y_rotat ion)
more (condition_x , x_rotation , 40)
between (condition_y , y_rotation , −30, 30)
i f (and(condition_x , condit ion_y))
{

r e d e f i n e (x , 0)
matrix_set_pixel (x , y , 100)

}
l e s s (condition_x , x_rotation , −40)
i f (and(condition_x , condit ion_y))
{

r e d e f i n e (x , 5)
matrix_set_pixel (x , y , 100)

}
between (condition_x , x_rotation , −30, 30)
i f (and(condition_x , condit ion_y))
{

r e d e f i n e (x , 2)
r e d e f i n e (y , 2)
matrix_set_pixel (x , y , 100)

}
. . .

}

3.3. NÁVRH APLIKÁCIE 27

3.3 Návrh aplikácie

Ako sme uvideli v podkapitole 1.4, jazyk C# je používaný na rýchlu tvorbu grafických
aplikácií pre platformu Windows pre takzvané Windows Forms Applications. Aplikácia
bude musieť byť prehľadná a ľahko ovládateľná, na čo nám poslúžia rôzne komponenty,
akými sú napríklad tlačidlá, zoznamy, oznamovacie okná a ďalšie predprogramované
funkcionality. Ukážku návrhu používateľského rozhrania je možné vidieť na obrázku
3.2.

V hornej časti obrazovky sa bude nachádzať lišta, ktorá bude obsahovať niekoľko
sekcií podľa funkcie, ktoré budú ponúkať. V prvej sekcii budú tlačidlá pre tvorbu
nových paralelných automatov, možnosť uložiť alebo exportovať aktuálny stavový au-
tomat, načítať automat, ktorý užívateľ niekedy v minulosti uložil a možnosť zavrieť
aplikáciu. Čítanie a ukladanie bude zabezpečené serializáciou. Export bude špeciálny
formát, kedy všetky názvy funkcií budú prekonvertované na čísla. V druhej sekcii budú
tlačidlá zamerané na tvorbu stavov, ktoré pre množstvo používania bude možné zavo-
lať i klávesovými skratkami. Posledná časť sa bude venovať správe, presnejšie tvorbe
premenných.

Ľavá časť obrazovky bude vyhradená pre sumarizáciu aktuálneho správania robota,
ktoré predstavujú všetky paralelné a vnorené automaty a všetky premenné, s ktorými
bude robot vedieť pracovať, rozdelené to bude horizontálne, kde v hornej časti bude
takzvaný tree view, kde užívateľ bude prehľadne vidieť, ktorý vnorený automat patrí
ktorému automatu, jednotlivé automaty bude vedieť zbaliť a rozbaliť, po kliknutí naň
bude mať možnosť editovať ho alebo vymazať. V spodnej časti bude obyčajný zoznam,
ktorý bude obsahovať všetky premenné, ktoré užívateľ vytvoril. Pre prehľadnosť, jed-
notlivé typy premenných budú farebne rozlíšené. Tak ako pri kliknutí na nejaký auto-
mat má užívateľ možnosť ho editovať, túto možnosť bude mať aj tu. Po kliknutí na
meno premennej bude mať možnosť meniť meno, hodnotu alebo premennú odstrániť.

V pravej časti sa bude nachádzať textové pole obsahujúce všetky možné funkcie,
ktoré môže užívateľ použiť. Keďže sú vypísané v textovom poli, užívateľ ich bude môcť
jednoducho kopírovať do stavových automatov.

V strednej časti obrazovky, ktorej bude vyhradené najviac priestoru, sa budú sta-
vové automaty vykresľovať. Pre jednoduchosť a prehľadnosť sa bude vykresľovať vždy
iba jeden automat a to ten, ktorý bude zvolený v ľavej časti obrazovky a jeho meno bude
vypísané v hornej časti. Keďže automat môže obsahovať viac druhov stavov, tieto stavy
sa budú vykresľovať rôznou farbou podľa typu akého sú. Medzi jednotlivými stavmi
budú prechodové funkcie alebo prechody, ktoré bude možné kresliť oblúkom alebo lo-
menou čiarou, aby to bolo pre užívateľa prehľadné, a smer prechodu bude označený
šípkou. Keďže automat obsahuje výnimočné prechody, tak tie budú zvýraznené odliš-
nou farbou. Interakciu so stavmi a prechodmi bude uskutočňovaná pomocou myši a

28 KAPITOLA 3. NÁVRH

Obr. 3.2: Návrh grafickej aplikácie za použitia nástroja [15]

kláves. Všetky klávesové skratky budú vypísané na pracovnej ploche, alebo bude vy-
písaná klávesová skratka, po stlačení ktorej sa všetky skratky a celé ovládanie zobrazí
užívateľovi. K podmienkam prechodov, zoznamom inštrukcií ktoré sa majú pri zmene
stavu vykonať a ďalším obdobným funkciám sa používateľ bude vedieť dostať pomocou
tlačidiel, ktoré budú na takom mieste, aby bolo užívateľovi jasné, k čomu patria.

3.4 Návrh firmvéru

Nebudeme tvoriť nový firmvér ale rozširovať existujúci od spoločnosti Pybricks, ktorý
sme už spomínali v časti 1.3.1. Firmware je určený na prijímanie a štartovanie prog-
ramov v jazyku Python, ktoré sú preložené do bajtkódu dialektu MicroPython. Celú
túto časť nevyužijeme. Firmvér však obsahuje množstvo užitočného kódu na riadenie
hardvérových komponentov a to v rôznych módoch a tú časť využijeme. Napríklad
pre farebný senzor vieme získať priamo farbu, alebo RGB, alebo HSV a mnoho ďal-
ších typov výstupov. V prvom kroku zjednodušíme volanie týchto funkcií a to tým,
že naprogramujeme API (podľa návrhového vzoru Adaptér), kedy užívateľ napríklad
zavolá použije akciu get_low_distance(), čo na pozadí zavolá funkciu get_data() s pa-
rametrom módu, ktorý bežný užívateľ nepotrebuje vedieť. Takto vieme používateľovi
sprístupniť množstvo užitočnej funkcionality dostupnej priamo vo firmvéri.

Druhým krokom bude vytvorenie globálnej pamäte pre presun parametrov medzi
funkciami. Napríklad vyššie spomenutá funkcia potrebuje dva parametre. Prvým je
senzor, z ktorého bude čítať dáta a druhým je smerník do pamäte, kam sa majú dáta
uložiť. Vďaka tomu sa zo všetkých funkcií stanú funkcie bez parametra a bude možné
smerníky na tieto funkcie zaradiť do jednej tabuľky a efektívne ich podľa čísla fun-

3.5. NÁVRH ÚPRAV WEBOVÉHO PROSTREDIA 29

kcie/akcie pri interpretovaní automatu zavolať v čase O(1) potom, čo sa jej parametre
pripravia do globálnej štruktúry parametrov.

Tretím krokom bude tieto funkcie uložiť do poľa, pre jednoduchšiu interpretáciu
a čítanie stavových automatov. Napríklad vyššie spomenutá funkcia bude mať v poli
index 54. Čiže pri tvorbe exportu automatu sa nepoužije názov funkcie ale číslo 54.

Štvrtý krok predstavuje príprava štruktúr, ktoré budú slúžiť na uschovanie dát
ohľadom stavových automatov, Využijeme dynamické alokovanie pamäte a knižnice
na správu dynamických štruktúr. To však nie je také jednoduché, keďže pôvodný fir-
mware je navrhnutý tak, aby dynamická pamäť bola dostupná predovšetkým micro-
pythonovským programom. Celkovo je bežné (a je to aj tento prípad), že program
bežiaci na embedded ARM architektúre nemá dostupnú dynamickú pamäť pomocou
tradičných volaní malloc() / free(). Systém bol vytvorený využitím knižníc ContikiOS,
ktorý umožňuje 3 spôsoby alokovania pamäte: 1) bežná dynamická pamäť pomocou roz-
hrania MEMB - informácie o pamäťových blokoch nie sú uložené priebežne na začiatku
blokov ako to robí malloc(), ale v inej časti pamäte, 2) špeciálna manažovaná pamäť
podporujúca defragmentáciu a 3) malloc(), ktorý ale nie je odporúčaný a v tomto firm-
vér jeho použitie ani nie je možné. Využijeme teda alokovanie v štýle MEMB, čo si
vyžiada určitú agendu naviac.

V ďalšom kroku bude vytvorenie metódy, ktorá bude čítať vstup odoslaný cez kon-
zolu webového rozhrania a z neho vytvárať vnútornú reprezentáciu dátových štruktúr
tak, ako to používateľ naprogramoval v našej aplikácii, ktorá bude potom pripravená
na interpretovanie automatu.

No a v poslednom kroku sa po odštartovaní programu z webového prostredia auto-
mat odštartuje, t.j. bude interpretovať prijatý kód, spúšťať požadované zoznamy akcií,
kontrolovať podmienky stavových prechodov, udržiavať lokálne aj globálne premenné
použité v automate a realizovať stavové prechody, keď budú podmienky splnené.

Všetky tieto kroky bude potrebné neustále kontrolovať a testovať aby sme neskôr
neobjavili nežiadúce správanie, ktoré bude ťažké odstrániť. Firmvér má predprogramo-
vané testy, ale nie sú k ním návody, ako ich spustiť a ako pripraviť robota na takéto
testovanie.

3.5 Návrh úprav webového prostredia

Webová aplikácia od spoločnosti Pybricks prejde taktiež zmenami. Momentálne je
možné vytvárať dva druhy programov, ktorými sú blokový program a Python. My
budeme implementovať možnosť tretieho typu a tým je stavový automat. Automat
exportovaný do špeciálneho interného formátu (v textovej reprezentácii) sa bude do
robota posielať tým istým tlačidlom ako sa posielali programy doteraz cez sériovú

30 KAPITOLA 3. NÁVRH

linku BlueTooth spojenia s robotom.

Kapitola 4

Implementácia

Táto kapitola sa zameriava na priebeh implementácie niektorých častí návrhu a to tých,
ktoré boli problémové alebo zaujímavé.

4.1 Čítanie dát zo senzorov

V celom firmvéri je jediná funkcia, ktorá dostáva dáta zo senzorov a takýto je jej pse-
udokód: error get_data(legodev_dev*, uint8_t, void**). Prvým parametrom je smerník
na zariadenie, z ktorého chceme čítať, druhým je mód, v ktorom ich bude zariadenie
spracovávať a tretím je smerníková referencia na premennú v pamäti, ktorá ukazuje na
štruktúru, do ktorej sa uložia dáta. Je pri tom použitý typ void * a to preto, že každý
mód vracia iný typ dát. Tento typ dát nájdeme pri definícii módov hneď vedľa. Líšia
sa počtom bitov alebo aj počtom parametrov, preto treba pri každom čítaní pracovať
s dátami osobitne. Preto sme rozšírili náš interface, kde ponúkame užívateľovi čítanie
týchto dát v rôznych módoch bez potreby údržby a spracovania výsledkov.

4.2 Ovládanie motorov

Pre pohyb je vo firmvéri množstvo funkcií a väčšina z nich obsahuje mód, čo má ro-
biť potom, čo pohyb ukončí. Firmvér nám nedovolí zavolať dva po sebe idúce fun-
kcie, ktoré ovládajú pohyb motora, pokiaľ sa prvý pohyb neukončil. Pre predstavu
si môžeme uviesť spustenie motora, ktorý otočí servomotorom daný počet stupňov
danou rýchlosťou. Pseudokód je takýto: error servo_run_angle(servo*, int, int, con-
trol_on_completion). Posledným parametrom určujeme mód, ktorý definuje to, čo má
robiť motor po tom, čo splní úlohu.

Jednou z možností je, že motor bude pokračovať v pohybe, ale uvoľníme ho, aby
mohol prijať a vykonať ďalšiu inštrukciu. Inou možnosťou je, že motor zastaví a bude
držať aktuálny uhol bez toho, aby mohol vykonať novú inštrukciu. Pri programovaní

31

32 KAPITOLA 4. IMPLEMENTÁCIA

by bolo pre užívateľa náročné sa zorientovať vo všetkých týchto módoch a tak všetky
pohyby budú mať jeden a ten istý mód. Po vykonaní inštrukcie sa motor zastaví a
dovolí vykonávanie ďalších inštrukcii.

4.3 Bluetooth a komunikácia

Po nainštalovaní firmvéru cez kábel je jediná možnosť ako s robotom komunikovať
Bluetooth. Cez Bluetooth vieme nahrať celý program alebo cez konzolu písať príkaz
po príkaze. Pri testovaní ako robot prijíma programy sme zistili, že webová stránka má
zabudovanú knižnicu, ktorá z programu v Pythone vyrobí bajtový kód, ktorý následne
posiela pomocou Bluetooth-u.

Riešením je posielať nami vytvorené stavové automaty exportované aplikáciou po-
mocou konzoly webového prostredia, pretože údaje odoslané cez túto konzolu sa po-
sielajú kompletne a bez žiadnych úprav. Na strane robota je funkcia, ku ktorej máme
jednoduchý prístup, ktorá číta z automaticky napĺňaného bufra BlueTooth komunikač-
nej linky. Jej pseudokód je takýto: error bluetooth_rx(uint8_t *, uint32_t*). Vstupné
parametre sú dva. Prvým je smerník na pole, ktoré bude obsahovať vstupný reťazec.
Druhým je smerník na číslo, ktoré bude popisovať množstvo prijatých znakov. Bufer
nie je nekonečný ako ani pamäť robota a tak keď je prenášané veľké množstvo dát,
ktoré chceme spracovávať v robotovi, tak je na mieste použiť cyklus while, ktorý sa
bude opakovať pokiaľ hodnota, kam ukazuje smerník na počet dát nebude nulová.

Takýto istý problém má aj vysielanie dát z robota. Zásobník, ktorý plníme, má
veľkosť približne 25 znakov, čiže ak chceme vysielať nejaký dlhší reťazec, tak je to
potrebné taktiež urobiť pomocou while cyklu. Funkcia, ktorá zapisuje do bufra, má
dva parametre, kde prvým je pointer na začiatok reťazca, ktorý chceme odvysielať a
druhým je dĺžka tohto reťazca. Výstupom okrem kódu chyby je druhý parameter, ktorý
po návrate z funkcie obsahuje množstvo dát, ktoré zapísal do výstupného bufra.

Kapitola 5

Výsledky

Táto kapitola obsahuje dve časti. Prvou časťou sú ukážky programov vytvorených v
systéme navrhnutom v bakalárskej práci a v druhej časti sú spôsoby, ako sme testovali
funkčnosť a stabilitu programov.

5.1 Ukážky hotových programov

Tu sa nachádzajú výsledky implementácií, ktoré sme si popísali v kapitole 4. Každú
časť popisujeme samostatne s tým, že hodnotíme, čo sa nám podarilo, na aké problémy
sme pri tom narazili a ako sme ich riešili.

5.1.1 Aplikácia na tvorbu automatov

Táto aplikácia spĺňa všetky základne požiadavky, ktoré nám vznikajú pri tvorbe stavo-
vých automatov. Vieme vytvárať paralelne spúšťajúce sa automaty, vnorené automaty
a množstvo stavov. Okrajové prípady sú ošetrené a chyby, ktoré sa objavili počas tes-
tovania boli analyzované a taktiež odstránené.

Na obrázku 5.1 môžeme vidieť jednoduchý prototyp správania robota, ktorý sleduje
čiaru. Pri pohybe využíva dva motory a farebný senzor, ktoré môžeme vidieť v ľavej
dolnej časti.

Na druhom obrázku 5.2 môžeme vidieť komplexnejšie správanie robota. Tento prog-
ram popisuje robota, ktorý sa pohybuje po priestore a počas pohybu počíta objekty
troch farieb. Okrem motorov a senzorov využíva globálnu premennú, lebo robot sa
má zastaviť po tom, čo napočíta určitý počet objektov. Hoci je zobrazený iba jeden
automat, v ľavom paneli možno vidieť, že program pozostáva z viacerých automatov.

33

34 KAPITOLA 5. VÝSLEDKY

Obr. 5.1: Ukážka stavového automatu vytvoreného našou aplikáciou

Obr. 5.2: Ukážka komplexného stavového automatu vytvoreného našou aplikáciou

5.1. UKÁŽKY HOTOVÝCH PROGRAMOV 35

Obr. 5.3: Ukážka webového rozhrania

5.1.2 Webová stránka

Ako sme uviedli pri implementácii webového prostredia v časti 4.3, posielanie textových
súborov cez tlačidlá by si vyžadovalo rozsiahlejšie zásahy do webového prostredia, na
ktoré nemáme kapacitu a potrebovali by sme viac času na jeho úpravu.

Na komunikáciu preto momentálne používame časť webu, ktorá s robotom komu-
nikuje pomocou konzoly, čo môžeme vidieť na obrázku 5.3. V strednej časti obrázka
vidíme konzolu, v ktorej je písmeno "d", ktoré sme tam napísali pre zapnutie módu.
Tento mód zapol výpis hodnôt senzorov a aktuálneho stavu, v ktorom sa robot nachá-
dza. Výpis nastáva každých 200 milisekúnd. Ďalší riadok potvrdzuje vypnutie alebo
zapnutie tohto módu. V treťom riadku je číslo 0, ktoré spúšťa prvý z troch predprog-
ramovaných automatov. Tento automat predstavuje správanie, kedy sa robot snaží
udržiavať vzdialenosť s objektom, ktorý je pred ním v rozmedzí on 150 do 350 mili-
metrov. Pri spustení a ukončení jednotlivých automatov nás o tom informuje výpis v
konzole.

5.1.3 Firmvér

Firmvér od Pybricks je veľký a robustný. Pri implementácii sme narazili na množstvo
problémov, ktorými boli napríklad chýbajúce znalosti hardvéru, nevysvetlených skra-
tiek v názvoch funkcii a konštánt, slabá znalosť používania a operácie so smerníkmi.
To zapríčinilo niekedy veľké problémy, ktoré si vyžadovali väčšie množstvo času na

36 KAPITOLA 5. VÝSLEDKY

Obr. 5.4: Fotodokumentácia z priebehu testovania na Robotickom krúžku.

implementáciu a testovanie, než sa na začiatku očakávalo.

Úspešne sa nám podarilo vytvoriť interface pre volanie funkcií na obsluhu hard-
véru, Vytvorenie globálnej pamäte, pomocou ktorej si funkcie vymieňajú parametre, s
ktorými pracujú, správu funkčnosti komunikácie prostredníctvom Bluetooth-u ako pri
vysielaní tak i pri prijímaní. Nakoniec sme implementovali spracovanie a vykonávanie
nami vytvorených stavových automatov. To sme na konci podrobili taktiež testovaniu
a nájdené chyby sme odstránili.

5.2 Testovanie

Tak ako sme si už spomínali vyššie, testovanie prebiehalo počas celej implementácie.
Niekoľkokrát sme dali programy vyskúšať kolegom a na základe ich spätnej väzby sme
chyby opravovali a náročné alebo zlé ovládanie upravovali a menili. Výsledkom bola
aplikácia, ktorú sme dali otestovať účastníkovi Robotického krúžku pri Spojenej škole
svätého Františka z Assisi v Bratislave, obr. (5.4).

V prvom kroku bol žiakovi vysvetlený a na príklade popísaný koncept stavových
automatov. Následne mu bola ukázaná práca v aplikácii, aby získal prehľad čo všetko v
aplikácii dokáže naprogramovať. Po tomto kroku dostal zadania, ktoré v asistencii riešil.
Jednou z úloh bolo vytvoriť správanie robota, ktorý má udržiavať určitú vzdialenosť

5.2. TESTOVANIE 37

Obr. 5.5: Na fotografii je program, ktorý vytvoril účastník testovania.

od prekážky, ktorá je pred ním. Účastník pochopil, že takéto správanie potrebuje po
prvotnom vstupnom stave ďalšie tri aktívne stavy v ktorých bude získavať vzdialenosť
od prekážky a tie si relevantne pomenoval ‘Stoj’, ’Dopredu’ a ’Dozadu’. V ďalšom kroku
ich prepojil stavovými prechodmi, kde nastavil podmienky prechodu a všetky úlohy,
ktoré má robot pri zmene stavu vykonať. Výsledný stavový automat (5.5) následne
spustil v robotovi, ktorý sa správal presne tak, ako zadanie popisovalo. Testovanie sme
zachytili na fotografii na obr. 5.6. V písomnej spätnej väzbe účastník napísal: „Tak
páčilo sa mi, že všetko fungovalo a že je to taký zaujímavý spôsob programovania.“

38 KAPITOLA 5. VÝSLEDKY

Obr. 5.6: Na fotografii je zaznamenané testovanie programu.

Záver

Hlavným cieľom tejto bakalárskej práce bolo vytvoriť nový spôsob, ako programo-
vať správanie robotov zostrojených zo stavebnice Spike Prime od spoločnosti LEGO
Education. Týmto spôsobom sú stavové automaty, ktoré vhodne vystihujú a popisujú
správanie robotov. Pri tvorbe návrhu a implementácie sme sa pokúsili zachovať ne-
náročnosť programovacieho jazyka a priblížiť sa grafickému programovaniu, akým je
Scratch. Dôvodom potreby tohto nového spôsobu je aj to, že pri komplexnejších prob-
lémoch sa programy v jazykoch Python a blokových jazykoch typu Scratch stávajú
neprehľadné a ťažko modifikovateľné.

Aplikácia na tvorbu stavových automatov umožňuje užívateľom vytvárať programy
popisujúce správanie robotov skĺbením grafického a textového programovania. Apliká-
cia je prehľadná a jednoduchá na používanie.

Webové rozhranie, ktoré slúži na komunikáciu medzi počítačom a robotom nebolo
nijako upravované, ale zmenil sa spôsob používania. Namiesto doterajšieho nahrávania
programov alebo ovládania robota pomocou konzoly, sa teraz konzola využíva na posie-
lanie reprezentácii stavových automatov robotovi a interakciu s bežiacim programom.

Firmvér robota bol modifikovaný postupne v niekoľkých krokoch. Prvým bolo vy-
tvorenie ľahšieho prístupu k ovládaniu hardvéru, ďalším bolo vytvorenie globálnej pa-
mäte, ktorá slúži na posúvanie parametrov, ktoré potrebujú funkcie pre správne fun-
govanie. Tretím krokom bolo sprevádzkovanie Bluetooth komunikácie pre posielanie a
prijímanie textových reťazcov. To je potrebné pre výpis premenných do konzoly, alebo
pre prijímanie textových reprezentácií automatov, ktoré budú vložené do konzoly. Štvr-
tým krokom bolo spracovanie vstupu a vytvorenie vnútornej reprezentácie stavového
automatu. Posledným bolo otestovanie behu programu a vyladenie všetkých chýb.

Implementované boli i moderné technológie ako napríklad knižnica slúžiaca na se-
rializáciu alebo aplikácia vytvorená ako ‘Windows Form Application’. Všetky tri časti
boli priebežne testované a každá nájdená chyba programu bola opravená.

Navrhnutá aplikácia spĺňa stanovené ciele bakalárskej práce. Výsledkom je aplikácia,
v ktorej užívateľ programuje roboty pomocou stavových automatov, webové rozhranie
pomocou ktorého vie tieto programy posielať robotovi a firmvér, ktorý tieto stavové
automaty spracováva a vykonáva.

V rámci budúcich možných vylepšení práce by bolo možné implementovať a rozšíriť

39

40 Záver

ju o ďalšie funkcionality. Jednou z možných úprav by mohlo byť v aplikácii vylepšiť gra-
fickú stránku programu alebo implementovať rôzne zlepšenia používania tohto nástroja,
napríklad kontrolu textového kódu. Iným rozšírením by mohlo byť webové prostredie,
ktoré by sme modifikovali tak, aby bolo možné nahrávať celé súbory s reprezentáciou
stavových automatov.

Literatúra

[1] BatteryPoweredBricks: WIP In depth Lego Dacta retrospective video series, do-
stupné online: https://www.eurobricks.com/forum/index.php?/forums/topic/190311-
wip-in-depth-lego-dacta-retrospective-video-series/ (naposledy navštívené
17.05.2024)

[2] BatteryPoweredBricks: Lego Dacta Test, YouTube video, dostupné online:
https://youtu.be/0pHY7IJ5T-o?si=Y-19RfcTDB0d5R6Y (naposledy navštívené
17.05.2024)

[3] Luciano F de Medeiros, Luiz Roberto Cuch: Robótica Educacional como Recurso
Pedagógico para Alunos de Baixo Rendimento: Relato de Experiência, EDUCERE
- XIII Congresso Nacional de Educação, 2017.

[4] Reduco Ltd.: FLL Casts, vzdelávací portál, dostupné on-line:
https://www.fllcasts.com/ (naposledy navštívené 26.05.2024)

[5] LEGO Education, webstránka, dostupné on-line: https://education.lego.com/ (na-
posledy navštívené 18.05.2024)

[6] Brooks R., Cambrian Intelligence: The Early History of the New AI, A Bradford
Book, 1999.

[7] Balogh, R, & Obdržálek, D., Using Finite State Machines in Introductory Robotics:
Methods and Applications for Teaching and Learning, Robotics in Education, 2019.

[8] Hopcroft J. E., Ullman J. D., Introduction to automata theory, languages and
computation, Addison-Wesley, 1939.

[9] Allauzen C., Mohri M., Efficient algorithms for testing the twins property, Journal
of Automata, Languages, and Combinatorics, vol. 8, s. 117-144, 2003.

[10] Daniels, G., Mindstorms / SPIKE Prime / SPIKE Essential, GitHub repozitár,
dostupné on-line: https://github.com/gpdaniels/spike-prime (naposledy navštívené
19.05.2024)

41

42 LITERATÚRA

[11] Petrovič P., Stavebnice LEGO Mindstorms Education EV3, materiály ku ško-
leniam, dostupné on-line: robotika.sk/events/18Skolenia/priruckaEV3.pdf (napo-
sledy navštívené 19.05.2024)

[12] Wallace, E., Finite State Machine Designer, 2010. dostupné on-line:
https://www.madebyevan.com/fsm/ (naposledy navštívené 19.05.2024)

[13] Pybricks, Robotics made easy, on-line aplikácia, dostupné on-line:
https://pybricks.com/ (naposledy navštívené 19.05.2024)

[14] Pybricks, Robotics made easy, Github repozitár, dostupné on-line:
https://github.com/pybricks (naposledy navštívené 19.05.2024)

[15] Figma, Figma Design, on-line aplikácia, dostupné on-line:
https://www.figma.com/design (naposledy navštívené 05.06.2024)

[16] Chung C. J., Introduction to Lego Robotics with RCX Code Programming Lan-
guage. Introductory workbook for Robofest Competition Teams, 2006. dostupné
on-line: https://www.robofest.net/academy/rcxcode4robofest.pdf (naposledy nav-
štívené 19.05.2024)

Príloha A: obsah elektronickej prílohy

V elektronickej prílohe priloženej k práci sa nachádza zdrojový kód programu i samotná
aplikácia pre tvorbu stavových automatov a zdrojový kód firmvéru. Tieto súbory sú
taktiež zverejnené aj na stránke https://davinci.fmph.uniba.sk/~vikiszaly1/bc/
source.html. Je možné ich nájsť v časti: Zdrojové súbory tejto práce.

43

https://davinci.fmph.uniba.sk/~vikiszaly1/bc/source.html
https://davinci.fmph.uniba.sk/~vikiszaly1/bc/source.html

	Úvod
	Východiská
	Stavebnice LEGO Education
	Nultá generácia
	Prvá generácia
	Druhá generácia
	Tretia generácia
	Štvrtá generácia

	Jazyky na programovanie robotov
	Konečné stavové automaty

	LEGO Spike Prime
	Programátorské prostredia

	Programovanie grafickej aplikácie v C#
	Serializácia v aplikáciách C#

	Špecifikácia a ciele práce
	Softvér na tvorbu automatov
	Nový firmvér
	Úprava webovej aplikácie

	Návrh
	Návrh modelu stavových automatov
	Návrh modelu jazyka pre akcie v automatoch
	Vzorové programy

	Návrh aplikácie
	Návrh firmvéru
	Návrh úprav webového prostredia

	Implementácia
	Čítanie dát zo senzorov
	Ovládanie motorov
	Bluetooth a komunikácia

	Výsledky
	Ukážky hotových programov
	Aplikácia na tvorbu automatov
	Webová stránka
	Firmvér

	Testovanie

	Záver
	Príloha A

