Home Code Progress Results References

References and sources

  • Jack Collins, Ross Brown, Jurgen Leitner, and David Howard. Traversing the reality gap via simulator tuning, 2020. arXiv:2003.01369.
  • Jack Collins, Ross Brown, Jürgen Leitner, and David Howard. Follow the gradient: Crossing the reality gap using differentiable physics (realitygrad), 2021. arXiv:2109.04674.
  • Jack Collins, David Howard, and Jürgen Leitner. Quantifying the reality gap in robotic manipulation tasks, 2018. arXiv:1811.01484.
  • Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and machine learning. http://pybullet.org, 2016–2021.
  • John J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall, Upper Saddle River, NJ, 3 edition, 2005.
  • Connor Gäde, Jan-Gerrit Habekost, and Stefan Wermter. Domain adaption as auxiliary task for sim-to-real transfer in vision-based neuro-robotic control. In IJCNN. IEEE, 2024.
  • Waseda University Humanoid Robotics Institute. Wabot - waseda robot-. Available 10.12.2025. URL: https://www.humanoid.waseda.ac.jp/booklet/kato_2.html.
  • Ramil Khusainov, Alexandr Klimchik, and Evgeni Magid. Humanoid robot kinematic calibration using industrial manipulator. In 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pages 184–189, 2017.
  • University of Hamburg Knowledge Technology Group. Nico neuro-inspired companion — seed robotics. Available 10.12.2025. URL: https://www.seedrobotics.com/nico-robot.
  • Knowledgetechnologyuhh. Github - knowledgetechnologyuhh/nico-software: Software to run the nico (neuro inspired companion) robot. Available 10.12.2025. URL: https://github.com/knowledgetechnologyuhh/NICOsoftware.
  • Quentin Le Lidec, Wilson Jallet, Louis Montaut, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. Contact models in robotics: a comparative analysis, 2023. arXiv:2304.06372.
  • Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, 2016.
  • Hwei Geok Ng, Paul Anton, Marc Brügger, Nikhil Churamani, Erik Fließwasser, Thomas Hummel, Julius Mayer, Waleed Mustafa, Nguyn Linh Chi, Nguyen Quan, Marcus Soll, Sebastian Springenberg, Sascha Griffiths, Stefan Heinrich, Nicolás Navarro-Guerrero, Erik Strahl, Johannes Twiefel, Cornelius Weber, and Stefan Wermter. Hey robot, why don’t you talk to me? 08 2017. doi:10.1109/ROMAN.2017.8172383.
  • Vicente Pedro. Real time graphical simulation for visual based pose estimation and self-calibrating of a humanoid robotic arm. Master’s thesis, Instituto Superior Técnico, Lisbon, 2014.
  • Prasanna Rasal. Humanoid robotics. 9:128–130, 06 2021. doi:https://doi.org/10.22214/ijraset.2021.35918.
  • Alessandro Roncone, Matej Hoffmann, Ugo Pattacini, and Giorgio Metta. Automatic kinematic chain calibration using artificial skin: self-touch in the iCub humanoid robot. In ICRA, pages 2305–2312. IEEE, 2014.
  • Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino. Crossing the reality gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning. IEEE Access, 9:153171–153187, 2021. doi:10.1109/ACCESS.2021.3126658.
  • Karla Stepanova, Tomas Pajdla, and Matej Hoffmann. Robot self-calibration using multiple kinematic chains—a simulation study on the icub humanoid robot. IEEE Robotics and Automation Letters, 4(2):1900–1907, 2019.
  • Tony Punnoose Valayil and Rose Shaji Augustine. Methods to solve forward kinematics of parallel and serial manipulators. AIP Conference Proceedings, 2670(1):030003, 12 2022. arXiv:https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0115314/16229983/030003\_1\_online.pdf, doi:10.1063/5.0115314.
  • Kenneth J. Waldron and James Schmiedeler. Kinematics, pages 11–36. Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-32552-1_2.
  • Ansei Yonezawa, Heisei Yonezawa, and Itsuro Kajiwara. Simple inverse kinematics computation considering joint motion efficiency. IEEE Transactions on Cybernetics, pages 1–12, 2024. doi:10.1109/TCYB.2024.3372989.
  • Chengyi Zhao, Yimin Wei, Junfeng Xiao, Yong Sun, Dongxing Zhang, Qiuquan Guo, and Jun Yang. Inverse kinematics solution and control method of 6-degreeof-freedom manipulator based on deep reinforcement learning. Scientific Reports, 14(1):12467, 2024. doi:https://doi.org/10.1038/s41598-024-62948-6.